medigraphic.com
SPANISH

Revista de Educación Bioquímica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2024, Number 4

<< Back Next >>

Rev Educ Bioquimica 2024; 43 (4)

Las técnicas moleculares para el análisis de la expresión génica, con un enfoque en modelos de hongos. Antecedentes históricos y aplicaciones actuales

Padilla-Garfias F, Araiza-Villanueva MG, Peña DA
Full text How to cite this article

Language: Spanish
References: 123
Page: 213-234
PDF size: 1070.82 Kb.


Key words:

molecular techniques, gene expression, gene regulation, RNA analysis, gene regulation in fungi.

ABSTRACT

Molecular techniques for gene expression analysis have significantly evolved over time and are now fundamental to understanding gene regulation in diverse organisms, including fungi. From the classical techniques such as Northern Blot and RNase Protection Assay to more modern tools such as Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) and Next Generation Sequencing (NGS) of ribonucleic acid (RNA), these methodologies have revolved genetic research. These techniques enable precise study of gene expression levels and variability, facilitating identi-fication of key genes and revealing patterns of gene expression and regulation. With increasingly sophisticated applications, these approaches provide detailed insight into gene dynamics, significantly contributing to the advancement of knowledge in molecular biology and genetics. In this review we provide a historical overview of the main techniques used to study gene expression, with an emphasis on studies conducted in fungi, with the aim to provide a perspective on the utility and importance of these methodologies.


REFERENCES

  1. Kalkanci A, Kadioglu A, Wilson D, JacobsenMD.Gene expression in fungi. IMA Fungus.2011;2(1):29–32.

  2. Naranjo-Ortiz MA, Gabaldón T. Fungalevolution: cellular, genomic and metaboliccomplexity. Biol Rev. 2020;95(5):1198–1232.

  3. Stark R, Grzelak M, Hadfield J. RNA sequencing:the teenage years. Nat Rev Genet.2019;20(11):631–656.

  4. Antonieto ACC, Silva RN. Transcriptomics inTrichoderma reesei. En: Aigner AR, Martzy R,editores. Trichoderma reesei Methods andProtocols. 1a ed. Nueva York, NY: Humana; 2020.p.251–269.

  5. Moustafa K, Cross JM. Genetic approaches tostudy plant responses to environmental stresses: Anoverview. Biology (Basel). 2016;5(2):1–18.

  6. Wang Z, Yang B. Northern blotting and itsvariants for detecting expression and analyzingtissue distribution of miRNAs. En: Harwood AJ,editor. Basic DNA and RNA Protocols. Methods inMolecular Biology, vol. 58. Berlin: Springer; 2010.p.83-100.

  7. Alwine JC, Kemp DJ, Stark GR. Method fordetection of specific RNAs in agarose gels bytransfer to diazobenzyloxymethyl-paper andhybridization with DNA probes. Proc Natl Acad SciU S A. 1977;74(12):5350–5354.

  8. Southern EM. Detection of specific sequencesamong DNA fragments separated by gelelectrophoresis. J Mol Biol. 1975;98(3):503–517.

  9. Krumlauf R. Northern blot analysis. En:Harwood AJ, editor. Basic DNA and RNAProtocols. Methods in Molecular Biology, vol. 58.New York: Humana Press; 1996. p. 113-122.

  10. Murphy D. Northern blotting. En: Murphy D,Carter DA, editores. Transgenesis Techniques.Methods in Molecular Biology, vol. 18. New York:Humana Press; 1993. p. 337-340.

  11. Streit S, Michalski CW, Erkan M, Kleeff J,Friess H. Northern blot analysis for detection andquantification of RNA in pancreatic cancer cells andtissues. Nat Protoc. 2009;4(1):37–43.

  12. Böhm-Hofstätter H, Tschernutter M, Kunert R.Comparison of hybridization methods and real-timePCR: their value in animal cell line characterization.Appl Microbiol Biotechnol. 2010;87(2):419–425.

  13. Reisinger H, Steinfellner W, Stern B, KatingerH, Kunert R. The absence of effect of gene copynumber and mRNA level on the amount of mAbsecretion from mammalian cells. Appl MicrobiolBiotechnol. 2008;81(4):701-710.

  14. Martinho C, Lopez-Gomollon S. Detection ofmicroRNAs by Northern blot. En: Dalmay T, editor.MicroRNA Detection and Target Identification.Methods in Molecular Biology, vol. 2630. NewYork: Humana; 2023. p. 45-53.

  15. Pérez-Torralba C, Ruiz-Olivares M,Sanbonmatsu-Gámez S, Expósito-Ruíz M, Navarro-Marí JM, Gutiérrez-Fernández J. Increasedinfections by herpes simplex virus type 1 andpolymicrobials of the genital tract, in the generalpopulation of a Spanish middle city. Rev EspQuimioter. 2021;34(4):320–329.

  16. Beckmann BM, Grünweller A, Weber MHW,Hartmann RK. Northern Blot detection ofendogenous small RNAs (approximately14 nt) inbacterial total RNA extracts. Nucleic Acids Res.2010;38(14):e147.

  17. Amich J, Vicentefranqueira R, Mellado E, Ruiz-Carmuega A, Leal F, Calera JA. The ZrfC alkalinezinc transporter is required for Aspergillusfumigatus virulence and its growth in the presenceof the Zn/Mn-chelating protein calprotectin. CellMicrobiol. 2014;16(4):548–564.

  18. Khalique A, Mattijssen S, Maraia RJ. A versatiletRNA modification-sensitive northern blot methodwith enhanced performance. RNA. 2022;28(3):418–432.

  19. Zinn K, Dimaio D, Maniatis T. Identification oftwo distinct regulatory regions adjacent to thehuman β-interferon gene. Cell. 1983; 34(3):865–879.

  20. Melton DA, Krieg PA, Rebagliati MR, ManiatisT, Zinn K, Green MR. Efficient in vitro synthesis ofbiologically active RNA and RNA hybridizationprobes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984; 12(18):7035–7056.

  21. Qu Y, Boutjdir M. RNase protection assay forquantifying gene expression levels. En: Zhang J,Rokosh G, editores. Cardiac Gene Expression.Methods in Molecular Biology, vol. 366. NewYork: Humana Press; 2007. p. 145–58.

  22. Emery P. RNase Protection Assay. Rosato E,editor. Circadian Rhythms. Methods in MolecularBiology, vol. 362. New York: Humana Press; 2007.p.249–258.

  23. Goldrick M, Kessler D. RNA analysis bynuclease protection. Curr Protoc Neurosci.2003;23(1):5.1.1–5.1.30.

  24. Brown PC, Thorgeirsson SS, Silverman JA.Cloning and regulation of the rat mdr2 gene.Nucleic Acids Res. 1993; 21(16):3885–3891.

  25. Burton EA, Tinsley JM, Holzfeind PJ,Rodrigues NR, Davies KE. A second promoterprovides an alternative target for therapeutic up-regulation of utrophin in Duchenne musculardystrophy. Proc Natl Acad Sci USA. 1999;96(24):14025–14030.

  26. Hardin PE, Hall JC, Rosbash M. Feedback of theDrosophila period gene product on circadiancycling of its messenger RNA levels. Nature. 1990;343(6258):536–540.

  27. Sehgal A, Rothenfluh-Hilfiker A, Hunter-EnsorM, Chen Y, Myers MP, Young MW. Rhythmicexpression of timeless: a basis for promotingcircadian cycles in period gene autoregulation.Science; 270(5237):808–810.

  28. Balsalobre A, Damiola F, Schibler U. A serumshock induces circadian gene expression inmammalian tissue culture cells. Cell. 1998;93(6):929–937.

  29. Emery P, So WV, Kaneko M, Hall JC, RosbashM.CRY, a Drosophila clock and light-regulatedcryptochrome, is a major contributor to circadianrhythm resetting and photosensitivity. Cell. 1998;95(5):669–679.

  30. Gilman M. Ribonuclease protection assay. CurrProtoc Mol Biol. 1993;24(1) 4.7.1–4.7.8.

  31. Romero-López C, Barroso-delJesus A,Menendez P, Berzal-Herranz A. Analysis of mRNAabundance and stability by ribonuclease protectionassay. En: Vancura A, editor. TranscriptionalRegulation. Methods in Molecular Biology, vol.809.New York: Springer; 2012. p. 197-210.

  32. Lee Y. MicroRNA maturation: stepwiseprocessing and subcellular localization. EMBO J.2002; 21(17):4663–4670.

  33. Carey MF, Peterson CL, Smale ST. The RNaseprotection assay. En: Cold Spring Harb Protoc.2013; 2013(3): 276–285.

  34. Müller K, Ehlers S, Solbach W, Laskay T. Novelmulti-probe RNase protection assay (RPA) sets forthe detection of murine chemokine gene expression.J Immunol Methods. 2001; 249(1–2):155–165.

  35. Cloutier N, Gravel A, Flamand L. Multiplexdetection and quantitation of latent and lytictranscripts of human herpesvirus-8 using RNaseprotection Assay. J Virol Methods. 2004; 122(1):1–7.

  36. Venkatesh LK, Fasina O, Pintel DJ. RNasemapping and quantitation of RNA isoforms. En: JinH, Gassmann W, editores. RNA AbundanceAnalysis. Methods in Molecular Biology, vol. 883.Totowa, NJ: Humana Press; 2012. p. 103-17.

  37. Duguay BA, Herod A, Pringle ES, Monro SMA,Hetu M, Cameron CG, et al. Photodynamicinactivation of human coronaviruses. Viruses.2022;14(1)1-19.

  38. Stabell FB, Tourasse NJ, Ravnum S, Kolstø AB.Group II intron in Bacillus cereus has an unusual 3′extension and splices 56 nucleotides downstream ofthe predicted site. Nucleic Acids Res.2007;35(5):1612–1623.

  39. Mercier A, Labbé S. Iron-dependent remodelingof fungal metabolic pathways sssociated withferrichrome biosynthesis. Appl Environ Microbiol.2010;76(12):3806–3817.

  40. Liang P, Pardee AB. Differential display ofeukaryotic messenger RNA by means of thepolymerase chain reaction. Science.1992;257(5072):967–971.

  41. Sturtevant J. Applications of Differential-display reverse transcription-PCR to molecularpathogenesis and medical mycology. ClinMicrobiol Rev. 2000;13(3):408–427.

  42. Jurecic R, Nachtman RG, Colicos SM, BelmontJW. Identification and cloning of differentiallyexpressed genes by long-distance differentialdisplay. Anal Biochem. 1998;259(2):235–244.

  43. Mong JA, Krebs C, Pfaff DW. Perspective:micoarrays and differential display PCR—tools forstudying transcript levels of genes inneuroendocrine systems. Endocrinology.2002;143(6):2002–2006.

  44. Steinau M, Rajeevan MS. RNA profiling inperipheral blood cells by fluorescent differentialdisplay PCR. Methods Mol Biol. 2009;496:211–222.

  45. McClelland M. RNA fingerprinting anddifferential display using arbitrarily primed PCR.Trends in Genetics. 1995;11(6):242–246.

  46. Tugores A, Belmonte JCI. Differential displayof eukaryotic mRNA. En: Sharpe PT, Mason I,editores. Molecular Embryology. Methods inMolecular Biology, vol. 461. New York: HumanaPress; 2008. p. 569-580.

  47. Kitahara T, Kiryu S, Takeda N, Kubo T, KiyamaH.Up-regulation of ferritin heavy chain mRNAexpression in the rat skeletal muscle afterdenervation: detected by means of differentialdisplay. Neurosci Res. 1995;23(4):353–360.

  48. Zhu YZ, Zhu YC, Stoll M, Unger T.Identification of regulated genes in rat heart aftermyocardial infarction by means of differentialmRNA display. Jpn Heart J. 2000;41(1):59–66.

  49. Krebs CJ, Pfaff DW. Expression of the SCAMP-4 gene, a new member of the secretory carriermembrane protein family, is repressed byprogesterone in brain regions associated withfemale sexual behavior. Brain Res Mol Brain Res.2001;88(1–2):144–154.

  50. Krebs CJ, Jarvis ED, Chan J, Lydon JP, OgawaS, Pfaff DW. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesteronein brain regions involved in female reproductivebehaviors. Proc Natl Acad Sci U S A.2000;97(23):12816–12821.

  51. Gancedo JM. Yeast Carbon CataboliteRepression. Microbiology and Molecular BiologyReviews. 1998;62(2):334–361.

  52. Hong YM, Park SW, Choi SY. Expression of theCIP1 gene induced under cadmium stress inCandida sp. Mol Cells. 1998;8(1):84–89.

  53. Chen B, Gao S, Choi GH, Nuss DL. Extensivealteration of fungal gene transcript accumulationand elevation of G-protein-regulated cAMP levelsby a virulence-attenuating hypovirus. Proc NatlAcad Sci USA. 1996;93(15):7996–8000.

  54. Edris S, Mutwakil M H Z, Sabir J S M, RamadanA M, Gadalla N O, Shokry A M, et al. Identificationof GPD1 gene from yeast via fluorescencedifferential display-polymerase chain reaction(FDD-PCR). Afr J Biotechnol. 2012;11(35)8653-8664.

  55. Vos P, Hogers R, Bleeker M, Reijans M, Lee Tvan de, Hornes M, et al. AFLP: a new technique forDNA fingerprinting. Nucleic Acids Res.1995;23(21):4407–4414.

  56. Bachem CWB, Van Der Hoeven RS, De BruijnSM, Vreugdenhil D, Zabeau M, Visser RGF.Visualization of differential gene expression using anovel method of RNA fingerprinting based onAFLP: Analysis of gene expression during potatotuber development. The Plant J. 1996;9(5):745–753.

  57. Breyne P, Dreesen R, Cannoot B, Rombaut D,Vandepoele K, Rombauts S, et al. QuantitativecDNA-AFLP analysis for genome-wide expressionstudies. Molecular Genetics and Genomics.2003;269(2):173–179.

  58. Vuylsteke M, Peleman JD, van Eijk MJT.AFLP-based transcript profiling (cDNA-AFLP) forgenome-wide expression analysis. Nat Protoc.2007;2(6):1399–1413.

  59. Breyne P, Zabeau M. Genome-wide expressionanalysis of plant cell cycle modulated genes. CurrOpin Plant Biol. 2001;4(2):136–142.

  60. Dellagi A, Birch PRJ, Heilbronn J, Lyon GD,Toth IK. cDNA-AFLP analysis of differential geneexpression in the prokaryotic plant pathogenErwinia carotovora. Microbiology.2000;146(1):165–171.

  61. Wang X, Tang C, Zhang G, Li Y, Wang C, LiuB, et al. cDNA-AFLP analysis reveals differentialgene expression in compatible interaction of wheatchallenged with Puccinia striiformis. sp. BMCGenomics. 2009;10:289.

  62. Massart S, Jijakli MH. Identification ofdifferentially expressed genes by cDNA-amplifiedfragment length polymorphism in the biocontrolagent Pichia anomala (strain Kh5). Phytopathology.2006;96(1):80–86.

  63. Kim DY, Hong MJ, Jang JH, Seo YW. cDNA-AFLP analysis reveals differential gene expressionin response to salt stress in Brachypodiumdistachyon. Genes Genomics. 2012;34(5):475–484.

  64. Xiao D, Liu ST, Wei YP, Zhou DY, Hou XL, LiY, et al. cDNA-AFLP analysis reveals differentialgene expression in incompatible interactionbetween infected non-heading Chinese cabbage andHyaloperonospora parasitica. Hortic Res.2016;3(1):16034.

  65. Velculescu VE, Zhang L, Vogelstein B, KinzlerKW. Serial analysis of gene expression. Science.1995;270(5235):484–487.

  66. Hu M, Polyak K. Serial analysis of geneexpression. Nat Protoc. 2006;1(4):1743–1760.

  67. Anisimov S. Serial analysis of gene expression(SAGE): 13 years of application in research. CurrPharm Biotechnol. 2008;9(5):338–350.

  68. Matsumura H, Reich S, Ito A, Saitoh H, KamounS, Winter P, et al. Gene expression analysis of planthost–pathogen interactions by SuperSAGE. ProcNatl Acad Sci USA. 2003;100(26):15718–15723.

  69. 69.Berndt A, Logan C. Serial analysis of geneexpression. En: Binder MD, Hirokawa N,Windhorst U, editores. Encyclopedia ofNeuroscience. Berlin, Heidelberg: Springer; 2009.p.3674–3679.

  70. van Ruissen F, Ruijter JM, Schaaf GJ,Asgharnegad L, Zwijnenburg DA, Kool M, et al.Evaluation of the similarity of gene expression dataestimated with SAGE and Affymetrix GeneChips.BMC Genomics. 2005;6(1):91.

  71. Kal AJ, van Zonneveld AJ, Benes V, van denBerg M, Koerkamp MG, Albermann K, et al.Dynamics of gene expression revealed bycomparison of serial analysis of gene expressiontranscript profiles from yeast grown on two differentcarbon sources. Mol Biol Cell. 1999;10(6):1859–1872.

  72. Irie T, Matsumura H, Terauchi R, Saitoh H.Serial analysis of gene expression (SAGE) ofMagnaporthe grisea: genes involved inappressorium formation. Molecular Genetics andGenomics. 2003;270(2):181–189.

  73. Larraya LM, Boyce KJ, So A, Steen BR, JonesS, Marra M, et al. Serial analysis of gene expressionreveals conserved links between protein kinase A,irbosome biogenesis, and phosphate metabolism inUstilago maydis. Eukaryot Cell. 2005;4(12):2029–2043.

  74. Kronstad J. Serial analysis of gene expression ineukaryotic pathogens. Infect Disord Drug Targets.2006;6(3):281–297.

  75. Grunstein M, Hogness DS. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences. 1975;72(10):3961–3965.

  76. Gergen JP, Stern RH, Wensink PC. Filterreplicas and permanent collections of recombinantDNA plasmids. Nucleic Acids Res.1979;7(8):2115–2136.

  77. Schena M, Shalon D, Davis RW, Brown PO.Quantitative monitoring of gene expression patternswith a complementary DNA microarray. Science. 1995;270(5235):467–470.

  78. Gresham D, Dunham MJ, Botstein D.Comparing whole genomes using DNAmicroarrays. Nat Rev Genet. 2008;9(4):291–302.

  79. Alonso-Betanzos A, Bolón-Canedo V, Morán-Fernández L, Sánchez-Maroño N. A review ofmicroarray datasets: where to find them and specificcharacteristics. En: Bolón-Canedo V, Alonso-Betanzos A, editores. Microarray Bioinformatics.Methods in Molecular Biology, vol. 1986. NewYork: Humana; 2019. p. 49-65.

  80. Trevino V, Falciani F, Barrera-Saldaña HA.DNA Microarrays: a powerful genomic tool forbiomedical and clinical research. MolecularMedicine. 2007;13(9–10):527–541.

  81. Diaz E, Barisone GA. DNA Microarrays:sample quality control, array hybridization andscanning. Journal of Visualized Experiments.2011;(49):1-5.

  82. Bumgarner R. Overview of DNA microarrays:types, applications, and their future. Curr ProtocMol Biol. 2013;101(1):2.1.1-2.1.11.

  83. Altman N. Replication, variation andnormalisation in microarray experiments. ApplBioinformatics. 2005;4(1):33–44.

  84. Brazma A, Hingamp P, Quackenbush J,Sherlock G, Spellman P, Stoeckert C, et al.Minimum information about a microarrayexperiment (MIAME)—toward standards formicroarray data. Nat Genet. 2001;29(4):365–371.

  85. Breakspear A, Momany M. The first fiftymicroarray studies in filamentous fungi.Microbiology. 2007;153(1):7–15.

  86. Garaizar J, Brena S, Bikandi J, Rementeria A,Pontón J. Use of DNA microarray technology andgene expression profiles to investigate thepathogenesis, cell biology, antifungal susceptibilityand diagnosis of Candida albicans. FEMS YeastRes. 2006;6(7):987–998.

  87. Walker LA, MacCallum DM, Bertram G, GowNAR, Odds FC, Brown AJP. Genome-wide analysisof Candida albicans gene expression patternsduring infection of the mammalian kidney. FungalGenetics and Biology. 2009;46(2):210–219.

  88. Rodríguez-Peña JM, Pérez-Díaz RM, Alvarez S,Bermejo C, García R, Santiago C, et al. The ‘yeastcell wall chip’ – a tool to analyse the regulation ofcell wall biogenesis in Saccharomyces cerevisiae.Microbiology. 2005;151(7):2241–2249.

  89. Momose Y, Iwahashi H. Bioassay of cadmiumusing a DNA microarray: genome-wide expressionpatterns of Saccharomyces cerevisiae response tocadmium. Environ Toxicol Chem.2001;20(10):2353.

  90. Ehrenreich IM, Bloom J, Torabi N, Wang X, JiaY, Kruglyak L. Genetic architecture of highlycomplex chemical resistance traits across four yeaststrains. PLoS Genet. 2012; 8(3):e1002570.

  91. Sánchez NS, Calahorra M, Ramírez J, Peña A.Salinity and high pH affect energy pathways andgrowth in Debaryomyces hansenii. Fungal Biol.2018;122(10):977–990.

  92. Bustin S. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trendsand problems. J Mol Endocrinol. 2002;29(1):23–39.

  93. Vandesompele J, De Preter K, Pattyn F, PoppeB, Van Roy N, De Paepe A, et al. Accuratenormalization of real-time quantitative RT-PCRdata by geometric averaging of multiple internalcontrol genes. Genome Biol. 2002;3(7).

  94. Higuchi R, Dollinger G, Walsh PS, Griffith R.Simultaneous amplification and detection ofspecific DNA sequences. Bio/Technology.1992;10(4):413–417.

  95. Chan JFW, Yip CCY, To KKW, Tang THC,Wong SCY, Leung KH, et al. Improved MolecularDiagnosis of COVID-19 by the novel, highlysensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR sssay validated invitro and with clinical specimens. J Clin Microbiol.2020;58(5).

  96. Gibson UE, Heid CA, Williams PM. A novelmethod for real time quantitative RT-PCR. GenomeRes. 1996;6(10):995–1001.

  97. Nolan T, Hands RE, Bustin SA. Quantificationof mRNA using real-time RT-PCR. Nat Protoc.2006;1(3):1559–1582.

  98. Arya M, Shergill IS, Williamson M,Gommersall L, Arya N, Patel HR. Basic principlesof real-time quantitative PCR. Expert Rev MolDiagn. 2005;5(2):209–219.

  99. Schmittgen TD, Zakrajsek BA, Mills AG, GornV, Singer MJ, Reed MW. Quantitative reversetranscription–polymerase chain reaction to studymRNA decay: comparison of endpoint and real-time methods. Anal Biochem. 2000;285(2):194–204.

  100. Yang DK, Kweon CH, Kim BH, Lim SI, KimSH, Kwon JH, et al. TaqMan reverse transcriptionpolymerase chain reaction for the detection ofJapanese encephalitis virus. J Vet Sci. 2004;5(4):345–351.

  101. de Jonge HJM, Fehrmann RSN, de Bont ESJM,Hofstra RMW, Gerbens F, Kamps WA, et al.Evidence based selection of housekeeping genes.PLoS One. 2007;2(9):e898.

  102. Livak KJ, Schmittgen TD. Analysis of relativegene expression data using real-time quantitativePCR and the 2−ΔΔCT method. Methods.2001;25(4):402–408.

  103. Artika IM, Dewi YP, Nainggolan IM, SiregarJE, Antonjaya U. Real-time polymerase chainreaction: current techniques, applications, and rolein COVID-19 diagnosis. Genes. 2022;13(12):2387.

  104. Bleve G, Rizzotti L, Dellaglio F, Torriani S.Development of reverse transcription (RT)-PCRand real-time RT-PCR assays for rapid detectionand quantification of viable yeasts and moldscontaminating yogurts and pasteurized foodproducts. Appl Environ Microbiol.2003;69(7):4116–4122.

  105. Teste MA, Duquenne M, François JM, ParrouJL. Validation of reference genes for quantitativeexpression analysis by real-time RT-PCR inSaccharomyces cerevisiae. BMC Mol Biol.2009;10:99.

  106. Wang X, Glawe DA, Weller DM, Okubara PA.Real-time PCR assays for the quantification ofnative yeast DNA in grape berry and fermentationextracts. J Microbiol Methods. 2020;168:105794.

  107. Archer M, Xu J. Current practices for referencegene selection in RT-qPCR of Aspergillus: outlookand recommendations for the future. Genes. 2021;12(7):960.

  108. Wang Z, Gerstein M, Snyder M. RNA-Seq: arevolutionary tool for transcriptomics. Nat RevGenet. 2009;10(1):57–63.

  109. 109.Deshpande D, Chhugani K, Chang Y,Karlsberg A, Loeffler C, Zhang J, et al. RNA-seqdata science: from raw data to effectiveinterpretation. Front Genet. 2023; 14:997383.

  110. Gondane A, Itkonen HM. Revealing the historyand mystery of RNA-Seq. Curr Issues Mol Biol.2023;45(3):1860–74.

  111. Lander ES, Linton LM, Birren B, Nusbaum C,Zody MC, Baldwin J, et al. Initial sequencing andanalysis of the human genome. Nature.2001;409(6822):860–921.

  112. Masters TL, Hilker CA, Jeraldo PR, BhagwateA V, Greenwood-Quaintance KE, Eckloff BW, etal. Comparative evaluation of cDNA library construction approaches for RNA-Seq analysis from low RNA-content human specimens. J Microbiol Methods. 2018;154:55–62.

  113. Mortazavi A, Williams BA, McCue K,Schaeffer L, Wold B. Mapping and quantifyingmammalian transcriptomes by RNA-Seq. NatMethods. 2008;5(7):621–628.

  114. Vvedenskaya IO, Goldman SR, Nickels BE.Preparation of cDNA libraries for high-throughputRNA sequencing analysis of RNA 5’ ends. MethodsMol Biol. 2015;1276:211–228.

  115. Bhardwaj V, Heyne S, Sikora K, Rabbani L,Rauer M, Kilpert F, et al. snakePipes: facilitatingflexible, scalable and integrative epigenomicanalysis. Bioinformatics. 2019;35(22):4757–4759.

  116. Ewels P, Magnusson M, Lundin S, Käller M.MultiQC: summarize analysis results for multipletools and samples in a single report. Bioinformatics.2016;32(19):3047–3048.

  117. Martin M. Cutadapt removes adaptersequences from high-throughput sequencing reads.EMBnet J. 2011;17(1):10.

  118. Dobin A, Davis CA, Schlesinger F, DrenkowJ, Zaleski C, Jha S, et al. STAR: ultrafast universalRNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

  119. Liao Y, Smyth GK, Shi W. featureCounts: anefficient general purpose program for assigningsequence reads to genomic features. Bioinformatics.2014;30(7):923–930.

  120. Anders S, Huber W. Differential expressionanalysis for sequence count data. Genome Biol.2010;11(10):R106.

  121. He D, Zhang X, Gao S, You H, Zhao Y, WangL.Transcriptome analysis of dimorphic fungusSporothrix schenckii exposed to temperature stress.International Microbiology. 2021;24(1):25–35.

  122. Lai Y, Liu K, Zhang X, Zhang X, Li K, WangN, et al. Comparative genomics and transcriptomicsanalyses reveal divergent lifestyle features ofnematode endoparasitic fungus Hirsutella minnesotensis. Genome Biol Evol. 2014;6(11):3077–3093.

  123. Zhang D, Chi W, Wang C, Dai H, Li J, Li C, etal. Pathogenic process-sssociated transcriptomeanalysis of Stemphylium lycopersici from tomato.Int J Genomics. 2022;2022:1–12.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Educ Bioquimica. 2024;43