2024, Number 7
<< Back Next >>
Med Crit 2024; 38 (7)
Correlation between body mass index and mechanical power value in patients under mechanical ventilation
Guzmán CJS, Morán GE, Reyes RJA, Gurrola GHB, Gutiérrez CE, Rodríguez RGS
Language: Spanish
References: 27
Page: 536-541
PDF size: 432.54 Kb.
ABSTRACT
Introduction: obesity is a disease caused by an excess or abnormal distribution of adipose tissue, making up the main public health problem in Mexico. The mechanical power of ventilation is a concept that describes the complex relationship between the respiratory system and the mechanical ventilator in terms of energy delivery. This value has been proposed as a goal of ventilatory protection, however, due to the characteristics of the obese patient; It is theorized that this value may be influenced in relation to body mass index (BMI).
Objective: to evaluate the correlation between body mass index and mechanical power value in patients under mechanical ventilation in the intensive care unit of the UMAE 71.
Material and methods: an observational, prospective, correlation-type study will be carried out in adults under mechanical ventilation treated in the adult intensive care unit (AICU), from June 01 to August 30, 2024. The following study variables will be included: age, gender, BMI and mechanical power. The Pearson r correlation coefficient between BMI and mechanical power will be evaluated.
Results: a correlation was found between mechanical power-BMI of 35% (p = 0.214); mechanical power-height a correlation of 85% was found (p < 0.001), Mechanical Power- Resistive pressure 49% (p = 0.075), mechanical power-peak pressure 0.740 (p = 0.002), mechanical power-tidal volume 0.737 (p = 0.003).
Conclusions: despite the theoretical foundation, no correlation was found between BMI and mechanical power; However, the analysis of this formula allows us to elucidate that height is a factor with a high correlation with mechanical power and leads us to question the value of this lung protection goal and its applicability in patients in our environment.
REFERENCES
Zhi G, Xin W, Ying W, Guohong X, Shuying L. "obesity paradox" in acute respiratory distress syndrome: a systematic review and meta-analysis. PLoS One. 2016;11(9):e0163677. Available in: https://pubmed.ncbi.nlm.nih.gov/27684705/
Dobner J, Kaser S. Body mass index and the risk of infection - from underweight to obesity. Clin Microbiol Infect. 2018;24(1):24-28. Available in: https://pubmed.ncbi.nlm.nih.gov/28232162/
Zhao Y, Li Z, Yang T, Wang M, Xi X. Is body mass index associated with outcomes of mechanically ventilated adult patients in intensive critical units? A systematic review and meta-analysis. PLoS One. 2018;13(6):e0198669. Available in: https://pubmed.ncbi.nlm.nih.gov/29883469/
De Schutter A, Lavie CJ, Milani RV. The impact of obesity on risk factors and prevalence and prognosis of coronary heart disease-the obesity paradox. Prog Cardiovasc Dis. 2014;56(4):401-408. Available in: http://dx.doi.org/10.1016/j.pcad.2013.08.003
Carnethon MR, De Chavez PJD, Biggs ML, Lewis CE, Pankow JS, Bertoni AG, et al. Association of weight status with mortality in adults with incident diabetes. JAMA. 2012;308(6):581-590. Available in: https://jamanetwork.com/journals/jama/fullarticle/1309174
Hogue CW Jr, Stearns JD, Colantuoni E, Robinson KA, Stierer T, Mitter N, et al. The impact of obesity on outcomes after critical illness: a meta-analysis. Intensive Care Med. 2009;35(7):1152-1170. Available in: https://pubmed.ncbi.nlm.nih.gov/19189078/
Akinnusi ME, Pineda LA, El Solh AA. Effect of obesity on intensive care morbidity and mortality: a meta-analysis. Crit Care Med. 2008;36(1):151-158. Available in: https://pubmed.ncbi.nlm.nih.gov/18007266/
De Jong A, Wrigge H, Hedenstierna G, Gattinoni L, Chiumello D, Frat J-P, et al. How to ventilate obese patients in the ICU. Intensive Care Med. 2020;46(12):2423-2435. Available in: https://pubmed.ncbi.nlm.nih.gov/33095284/
Chlif M, Keochkerian D, Choquet D, Vaidie A, Ahmaidi S. Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir Physiol Neurobiol. 2009;168(3):198-202. Available in: https://pubmed.ncbi.nlm.nih.gov/19559105/
Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest. 1996;109(1):144-151. Available in: https://pubmed.ncbi.nlm.nih.gov/8549177/
Eichenberger A-S, Proietti S, Wicky S, Frascarolo P, Suter M, Spahn DR, et al. Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analg. 2002;95(6):1788-1792. Available in: https://pubmed.ncbi.nlm.nih.gov/12456460/
Jones RL, Nzekwu M-MU. The effects of body mass index on lung volumes. Chest. 2006;130(3):827-833. Available in: https://pubmed.ncbi.nlm.nih.gov/16963682/
Kress JP, Pohlman AS, Alverdy J, Hall JB. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am J Respir Crit Care Med. 1999;160(3):883-886. Available in: https://pubmed.ncbi.nlm.nih.gov/10471613/
Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567-1575. Available in: https://pubmed.ncbi.nlm.nih.gov/27620287/
Tharp WG, Neilson MR, Breidenstein MW, Harned RG, Chatfield SE, Friend AF, et al. Effects of obesity, pneumoperitoneum, and body position on mechanical power of intraoperative ventilation: an observational study. J Appl Physiol. 2023;134(6):1390-1402. Available in: https://pubmed.ncbi.nlm.nih.gov/37022962/
Paudel R, Trinkle CA, Waters CM, Robinson LE, Cassity E, Sturgill JL, et al. Mechanical power: a new concept in mechanical ventilation. Am J Med Sci. 2021;362(6):537-545. Available in: http://dx.doi.org/10.1016/j.amjms.2021.09.004
Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347-354. Available in: http://dx.doi.org/10.1056/nejm199802053380602
Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-1308. Available in: https://pubmed.ncbi.nlm.nih.gov/10793162/
Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med. 2006;34(5):1311-1318. Available in: http://dx.doi.org/10.1097/01.ccm.0000215598.84885.01
Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: Systematic review and meta-analysis. JAMA. 2010;303(9):865-873. Available in: https://pubmed.ncbi.nlm.nih.gov/20197533/
Jardin F. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2006;173(6):685b-686. Available in: https://pubmed.ncbi.nlm.nih.gov/16522768/
Villar J, Martín-Rodríguez C, Domínguez-Berrot AM, Fernández L, Ferrando C, Soler JA, et al. A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med. 2017;45(5):843-850. Available in: https://pubmed.ncbi.nlm.nih.gov/28252536/
Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747-755. Available in: https://pubmed.ncbi.nlm.nih.gov/25693014/
Neto AS, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272-280. Available in: http://dx.doi.org/10.1016/s2213-2600(16)00057-6
Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100-1108. Available in: http://dx.doi.org/10.1097/aln.0000000000001056
Ball L, Pelosi P. How I ventilate an obese patient. Crit Care. 2019;23(1):176. Available in: https://doi.org/10.1186/s13054-019-2466-x
Costa ELV, Slutsky AS, Brochard LJ, Brower R, Serpa-Neto A, Cavalcanti AB, et al. Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2021;204(3):303-311. Available in: http://dx.doi.org/10.1164/rccm.202009-3467oc