2022, Number 2
<< Back Next >>
Rev Cubana Neurol Neurocir 2022; 12 (2)
Nucleus Globus Pallidus and Its Relevance in Movement Disorder Surgery
Macías GRJ, Reboiras UMJ, Solomon CMT
Language: Spanish
References: 36
Page: 1-20
PDF size: 543.05 Kb.
ABSTRACT
Introduction: The globus pallidus nucleus is a structure part of the basal ganglia and is involved in carrying out movements.
Objective: To substantiate the reasons why the globus pallidus nucleus is selected as a surgical target for some diseases that present with movement disorders.
Evidence acquisition: A bibliographic review (UptoDate, NCBI, Pubmed, Scielo and EBSCO) of more than 35 articles in Spanish and English related to globus pallidus nucleus was carried out, including anatomical nomenclatures, texts and atlases describing it, its structural organization, normal and pathological functioning and implications in the practice of Functional Neurosurgery. Most were published from 2016 to date.
Results: Anatomically, globus pallidus is considered as a structure that belongs to the so-called basal ganglia together with the caudate, putamen, substantia nigra (reticulate and compact parts) and the subthalamic nucleus. An internal medullary lamina divides it into the external globus pallidus and the internal globus pallidus. By taking these two portions into account, the designed functional models of the basal ganglia give it a dual role in the control of movement. The internal portion (internal globus pallidus) is justified as a surgical target for both hypokinetic and hyperkinetic movement disorders.
Conclusions: The anatomical and functional connections of both portions of the globus pallidus and their role in the direct and indirect pathways of movement control, as well as in the pathophysiology characterized by an environment with altered dopaminergic neurotransmission, justify its use as a surgical target in some diseases with movement disorders, by modifying the influence of these pathways on the activity of the motor thalamus.
REFERENCES
Nieuwenhuys R, Voogd J, Van Huijzen. El Sistema Nervioso Central Humano. Tomo 2. España: Editorial Panamericana; 2008.
Gardner E, Gray D, O’Rahilly R. Anatomía de Gardner. Quinta edición. México: Editorial Interamericana; 2010.
Fortunato J, Sierra I, Caicedo C, Mora J, Tramontini C. Anatomía básica de los ganglios basales. Rev. Médica .Sanitas. 2019 [acceso 25/11/2020];22(2):66-71. Disponible en: https://revistas.unisanitas.edu.co/index.php/rms/article/view/444
Valdés Martínez Y, Rubal Lorenzo N, Bulies De Armas S, Otero Baña Y, Araujo Sosa R. Núcleos Basales: Diferentes definiciones y divisiones anatómicas y funcionales. Tercer Congreso virtual de Ciencias Morfológicas. Tercera Jornada Científica de la Cátedra Santiago Ramón y Cajal. MORFOVIRTUAL; 2016.
Rothon Jr A. La colección Rothon®. 5550 Meadowbrook Industrial Ct., Illinois, EEUU: Asociación Estadounidense de Cirujanos Neurológicos (AANS) / Fundación de Investigación y Educación Neuroquirúrgica (NREFR). 2016 [acceso 25/11/2020]. Disponible en: https://www.nref.org/education/The-Rhoton-Collection
Trifiletti DM, Ruiz-Garcia H, Quinones-Hinojosa A, Ramakrishna R, Sheehan JP. The evolution of stereotactic radiosurgery in neurosurgical practice. J Neurooncol. 2021;151(3):451-59. DOI: 10.1007/s11060-020-03392-0
Abel TJ, Walch T, Howard MA. Russell Meyers (1905–1999): pioneer of functional and ultrasonic neurosurgery. Journal of Neurosurgery JNS. 2016;125(6):1589-95. Disponible en: https://thejns.org/view/journals/j-neurosurg/125/6/article-p1589.xml
Lozano A, Gildenberg Ph, Tasker R. Textbook of Stereotactic and Functional Neurosurgery. 2nd Edition. Germany: Springer-Verlag Berlin Heidelberg; 2009. p. 1.
Cif L, Hariz M. Seventy years of pallidotomy for movement disorders. Movement disorders. 2017;32(10):1498. DOI: https://doi.org/10.1002/mds.27054
Pamukcu A, Cui Q, Xenias HS, Berceau BL, Augustine EC, Fan I, et al. Parvalbumin and Npas Pallidal Neurons Have Distinct Circuit Topology and Function. JNeurosci. 2020;40(41):7855-76. DOI: 10.1523/JNEUROSCI.0361-20.2020
Carvalhal Ribas E, Yağmurlu K, de Oliveira E, Carvalhal Ribas G, Rhoton Jr A. Microsurgical anatomy of the central core of the brain. Journal of Neurosurgery. 2018;129(3):752-69. DOI: https://doi.org/10.3171/2017.5.JNS162897
Milardi D, Quartarone A, Bramanti A, Anastasi G, Bertino S, Basile GB, et al. The Cortico-Basal Ganglia-Cerebellar Network: Past, Present and Future Perspectives. Front Syst Neurosci. 2019;13:61. DOI: 10.3389/fnsys.2019.00061
Netter FH. Atlas de Anatomía Humana. Sexta Edición. España: Elsevier Masson; 2015.
Parent A. Extrinsic connections of the Basal Ganglia. TINS. 1990;13(7):254-8. DOI: 10.1016/0166-2236(90)90105-j
Saga Y, Hoshi E, Tremblay L. Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review. Front Neuroanat. 2017;10(11):30. DOI: 10.3389/fnana.2017.00030
Penney JB, Young AB. Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci. 1983;6:73-94. DOI: 10.1146/annurev.ne.06.030183.000445
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366-75. DOI: 10.1016/0166-2236(89)90074-x
Crossman AR. Primate models of dyskinesia: The experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience; 1987;21(1):1-40. DOI: 10.1016/0306-4522(87)90322-8
DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13(7):281-5. DOI: 10.1016/0166-2236(90)90110-v
Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamopallidal “hyperdirect” pathway. Neurosci Res. 2002;43(2):111-7. DOI: 10.1016/s0168-0102(02)00027-5
Boonstra JT, Michielse S, Temel Y, Hoogland G, Jahanshahi A. Neuroimaging Detectable Differences between Parkinson's Disease Motor Subtypes: A Systematic Review. Mov Disord Clin Pract. 20206;8(2):175-92. DOI: 10.1002/mdc3.13107
Ospina-García N, Pérez-Lohman C, Vargas-Jaramillo JD, Cervantes-Arriaga A, Rodríguez-Violante M. Ganglios basales y Conducta. Rev Mex Neuroci. 2017 [acceso 22/11/2020];18(6):74-86. Disponible en: http://previous.revmexneurociencia.com/wp-ontent/uploads/2017/11/RevMexNeuroci_2017_186-74-86-R.pdf
Karube F, Takahashi S, Kobayashi K, Fujiyama F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. eLife. 2019;8:e49511. DOI: 10.7554/eLife.49511
Djulejić V, Marinković S, Georgievski B, Stijak L, Aksić M, Puškaš L, et al. Clinical significance of blood supply to the internal capsule and basal ganglia. J Clin Neurosci. 2016;25:19-26. DOI: 10.1016/j.jocn.2015.04.034
Arredondo K, Zeron R, Rodríguez M, Cervantes A. Breve recorrido histórico de la enfermedad de Parkinson a 200 años de su descripción. Gac Med Mex. 2018;154(6):719-726. DOI: 10.24875/GMM.18003702
Niranjan A, Lunsford LD, Richardson RM. Current Concepts in Movement Disorder Management. Prog Neurol Surg. Basel, Karger. 2018;33:41-9. DOI: 10.1159/000481113
Wichmann T, DeLong MR. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality. Neurotherapeutics. 2016;13(2):264-83. DOI: 10.1007/s13311-016-0426-6
Wichmann T. Models of Parkinson's disease revisited. Nature. 2018;557(7704):169-70. DOI: 10.1038/d41586-018-02589-8
Crompe B, Aristieta A, Leblois A. The globus pallidus orchestrates abnormal network dynamics in a model of Parkinsonism. Nat Commun. 2020;11:1570. DOI: https://doi.org/10.1038/s41467-020-15352-3
Ospina-García N, Cervantes-Arriaga A, Rodríguez-Violante M. Etiología, fenomenología, clasificación y tratamiento de la distonía. Rev. Mexicana de Neurociencia. 2018 [acceso 25/11/2020];19(4):94-107. Disponible en: https://www.medigraphic.com/pdfs/revmexneu/rmn-2018/rmn184j.pdf
Acevedo JC, Salazar LM. Tratamiento de distonía estimulación cerebral profunda. Univ Méd. 2016;57(1):66-82. DOI: http://dx.doi.org/10.11144/Javeriana.umed57-1.tdec
Contarino MF, Van Den Dool J, Balash Y, Bhatia K, Giladi N, Koelman JH, et al. Clinical Practice: Evidence-Based Recommendations for the Treatment of Cervical Dystonia with Botulinum Toxin Front Neurol. 2017;8:35. DOI: 10.3389/fneur.2017.00035. 33. Tsuboi T, Lemos Melo J, Patel B, Foote KD, Okun MS, Ramírez-Zamora A, et al. Parkinson's disease motor subtypes and bilateral GPi deep brain stimulation: One-year outcomes. Parkisonism & Related Disorders. 2020;75:7-13. DOI: 10.1016/j.parkreldis.2020.05.004
Ramírez-Zamora A, Ostrem JL. Globus Pallidus Interna or Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease. JAMA Neurol. 2018;75(3):367-72. DOI: 10.1001/jamaneurol.2017.4321
Marín-Medina DS, Quintero-Moreno JF, Valencia-Vásquez A, Duque-Salazar C, Gil-Restrepo AF, Castaño-Montoya JP, et al. Estimulación cerebral profunda en enfermedad de Parkinson. Iatreia. 2018;31(3):262-73. DOI: 10.17533/udea.iatreia.v31n3a04
Bernal Pacheco O. Surgical management for dystonia. Acta Neurol Colomb. 2017 [acceso 25/11/2020];33(Supl1):S38-47. Disponible en: http://www.scielo.org.co/pdf/anco/v33s1/0120-8748-anco-33-s1-38.pdf
Rodríguez González M, Da Cuña Carrera I. Estimulación cerebral profunda del globo pálido interno en pacientes con síndrome de Gilles de la Tourette. Acta Neurol Colomb. 2018;34(2):146-55. DOI: https://doi.org/10.22379/24224022204