medigraphic.com
SPANISH

Odovtos - International Journal of Dental Sciences

ISSN 1659-1046 (Print)
Odovtos - International Journal of Dental Sciences
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 1

<< Back Next >>

Odovtos-Int J Dent Sc 2025; 27 (1)

Comparison of Surface Microhardness of Portland Cement Associated with Niobium Oxide and Zirconium Nanoparticles with the Mineral Aggregate Trioxide

Pinedo SAE, García RCR
Full text How to cite this article

Language: English
References: 34
Page: 64-72
PDF size: 357.02 Kb.


Key words:

Surface microhardness, Compressive strength, MTA, Calcium silicate, Nanoparticles, Portland cement.

ABSTRACT

To determine the surface microhardness of white portland cement associated with niobium nanoparticles, white portland cement associated with zirconium nanoparticles, and mineral trioxide aggregate. The present study is an experimental in-vitro study. The sample consisted of 03 study groups. These were divided into 09 subgroups of 04 hours, 14 days and 28 days. The instrument used to record the surface mechanical microhardness was the Vickers microdurometer. The Shapiro-Wilk statistical analysis was then performed to identify the normality of the data. The Anova test was applied to compare between the three groups and then the Tukey test for multiple comparisons with a 95% confidence level. White Portland cement associated with zirconium nanoparticles had the highest hardness value (p‹0.05), followed by white Portland cement associated with niobium nanoparticles and aggregate control cement of mineral trioxide. The lowest value of surface microhardness was obtained by the addition of mineral trioxide (p‹0.05). Surface microhardness values were significantly higher at 28 days than at 04 hours for all groups evaluated. White Portland cement with/without nanoparticulate additives generated higher surface microhardness than the control group added mineral trioxide in the evaluation periods.


REFERENCES

  1. Torabinejad M. Historical and contemporaryperspectives on root-end filling materials. JEndod. 1993; 19 (8): 432-3.

  2. Prati C., Gandolfi M.G. Calcium silicatebioactive cements: Biological perspectives and clinical applications. Dent Mater. 2016; 31 (4): 351-70.

  3. Tanomaru J.M., Vázquez F.A., Bosso-MarteloR., Bernardi M.I., Faria G. Effect of additionof nano-hydroxyapatite on physico-chemicaland antibiofilm properties of calcium silicatecements. J Appl Oral Sci. 2017; 24 (3):204-10.

  4. Vazquez F., Tanomaru-Filho M., ChávezG.M., Bosso-Martelo R., Basso-Bernardi MI.Effect of Silver Nanoparticles on Physicochemical and Antibacterial Properties of CalciumSilicate Cements. Braz Dent J. 2016 Sep-Oct;27 (5): 508-514.

  5. Bosso-Martelo R., Guerreiro-TanomaruJ.M., Viapiana R., Berbert F.L., Duarte M.A.,Tanomaru-Filho M. Physicochemical properties of calcium silicate cements associatedwith microparticulate and nanoparticulateradiopacifiers. Clin Oral Investig. 2016; 20(1): 83-90

  6. Kaur M., Singh H., Dhillon J.S., Batra M.,Saini M. MTA versus Biodentine: Reviewof Literature with a Comparative Analysis. JClin Diagn Res. 2017; 11 (8): 1-5.

  7. Formosa L.M., Mallia B., Camilleri J. Aquantitative method for determining the antiout characteristics of cement-based dentalmaterials including mineral trioxide aggregate. Int Endod J. 2017; 46 (2): 179-86.

  8. Zanza A., Reda R., Vannettelli E., Donfrancesco O., Relucenti M., Bhandi S., Patil S.,Mehta D., Krithikadatta J., Testarelli L. TheInfluence of Thermomechanical Compactionon the Marginal Adaptation of 4 DifferentHydraulic Sealers: A Comparative Ex VivoStudy. Journal of Composites Science. 2023;7 (1): 10.

  9. Parirokh M., Torabinejad M., DummerP.M.H. Mineral trioxide aggregate and otherbioactive endodontic cements: an updatedoverview - part I: vital pulp therapy. IntEndod J. 2018; 51 (2): 177-205.

  10. Camilleri J. The chemical composition ofmineral trioxide aggregate. J Conserv Dent.2018; 11 (4): 141-3.

  11. Dong X., Xu X. Bioceramics in Endodontics:Updates and Future Perspectives. Bioengineering (Basel). 2023; 10 (3): 354.

  12. Prasad A., Pushpa S., Arunagiri D., SawhnyA., Misra A., Sujatha R. A comparativeevaluation of the effect of various additives on selected physical properties of whitemineral trioxide aggregate. J Conserv Dent.2018; 18 (3): 237-41.

  13. Torabinejad M., Parirokh M., DummerP.M.H. Mineral trioxide aggregate and otherbioactive endodontic cements: an updatedoverview - part II: other clinical applicationsand complications. Int Endod J. 2018; 51 (3):284-317.

  14. Rebolledo S., Alcántara-Dufeu R., LuengoMachuca L., Ferrada L., Sánchez-SanhuezaG.A. Real-time evaluation of the biocompatibility of calcium silicate-based endodonticcements: An in vitro study. Clin Exp DentRes. 2023; 9 (2): 322-331.

  15. Bossù M., Mancini P., Bruni E., et al.Biocompatibility and Antibiofilm Propertiesof Calcium Silicate-Based Cements: An InVitro Evaluation and Report of Two ClinicalCases. Biology (Basel). 2021; 10 (6): 470.

  16. Forough Reyhani M., Hosseinian Ahangarnezhad S., Ghasemi N., Salem Milani A.Effects of various liquid-to-powder ratios onthe compressive strength of calcium enrichedmixture: Original research. J Dent Res DentClin Dent Prospects. 2021; 15 (2): 129-132.

  17. Sobhnamayan F., Adl A., Shojaee N.S.,Sedigh-Shams M., Zarghami E. CompressiveStrength of Mineral Trioxide Aggregate andCalcium-enriched Mixture Cement Mixedwith Propylene Glycol. Iran Endod J. 2017Fall; 12 (4): 493-496.

  18. Sheykhrezae M.S., Meraji N., Ghanbari F.,Nekoofar M.H., Bolhari B., Dummer P.M.H. Effect of blood contamination on the compressive strength of three calcium silicate-basedcements. Aust Endod J. 2018 Dec; 44 (3):255-259.

  19. Tomás-Catalá C.J., Collado-González M.,García-Bernal D., et al. Biocompatibility ofNew Pulp-capping Materials NeoMTA Plus,MTA Repair HP, and Biodentine on HumanDental Pulp Stem Cells. J Endod. 2018; 44(1):126-132.

  20. Kato G., Gomes P.S., Neppelenbroek K.H.,Rodrigues C., Fernandes M.H., GrenhoL. Fast-setting calcium silicate-based pulpcapping cements-integrated antibacterial,irritation and cytocompatibility assessment.Materials (Basel). 2023; 16 (1): 450.

  21. Arnez M.M., Castelo R., Ugarte D., AlmeidaL.P.A., Dotta T.C., Catirse A.B.C.E.B. Microhardness and surface roughness of Biodentine exposed to mouthwashes. J ConservDent. 2021 Jul-Aug; 24 (4): 379-383.

  22. Subramanyam D., Vasantharajan M. Effect ofOral Tissue Fluids on Compressive Strengthof MTA and Biodentine: An In Vitro Study. JClin Diagn Res. 2017; 11 (4): 94-96.

  23. Song W., Li S., Tang Q., Chen L., Yuan Z.In vitro biocompatibility and bioactivityof calcium silicate-based bioceramics inendodontics (Review). Int J Mol Med. 2021;48 (1): 128.

  24. Ashofteh Yazdi K., Ghabraei S., Bolhari B.,et al. Microstructure and chemical analysisof four calcium silicate-based cements indifferent environmental conditions. Clin OralInvestig. 2019; 23 (1): 43-52.

  25. Chang S.W., Gaudin A., Tolar M., Oh S.,Moon S.Y., Peters O.A. Physicochemical andbiological properties of four calcium silicatebased endodontic cements. J Dent Sci. 2022;17 (4): 1586-1594.

  26. Mahmoud O., Al-Meeri W.A., FarookM.S., Al-Afifi N.A. Calcium Silicate-BasedCements as Root Canal Medicinament. ClinCosmet Investig Dent. 2020; 12: 49-60.

  27. Camilleri J. Hydration mechanisms of mineraltrioxide aggregate. Int Endod J. 2007; 40 (6):462-70.

  28. Bayraktar K., Basturk F., Turkaydin Di,Gunday M. Long-term effect of acidic pHon the surface microhardness of ProRootmineral trioxide aggregate, Biodentine, andtotal fill root repair material putty. Dent Res J(Isfahan). 2021; 18 (1): 6-12.

  29. Hwang Y.C., Lee S.H., Hwang I.N., KangI.C., Kim M.S., Kim S.H., et al. Chemicalcomposition, radiopacity, and biocompatibility of Portland cement with bismuth oxide.Oral Surg Oral Med Oral Pathol Oral RadiolEndod 2009; 107: 96-102.

  30. Jafari F., Jafari S. Composition and physicochemical properties of calcium silicate basedsealers: A review article. J Clin Exp Dent.2017; 9 (10): 1249-1255.

  31. Dawood A.E., Manton D.J., Parashos P., etal. The physical properties and ion release ofCPP-ACP-modified calcium silicate-basedcements. Aust Dent J. 2015; 60 (4): 434-444.

  32. Tanomaru-Filho M., Garcia A.C., BossoMartelo R., Berbert F.L., Nunes Reis J.M.,Guerreiro-Tanomaru J.M. Influence ofaddition of calcium oxide on physicochemical properties of Portland cement withzirconium or niobium oxide. J Conserv Dent.2015; 18 (2): 105-108.

  33. Quea-Cahuana E., Ramirez W., ManriqueCoras M., Antimicrobial Efficacy of PortlandCement Compared to Mineral TrioxideAggregate Against Enterococcus faecalis andCandida albicans. Int. J. Odontostomat. 2022:16 (1): 21-30.

  34. Villavicencio M.S., Cahuana E.Q., RamirezW., Delgado L. Comparative Evaluation ofPhysicomechanical Properties and Antimicrobial Activity of White Portland Micro- andNanoparticulate Peruvian Cement, MineralTrioxide Aggregate, and Neomineral TrioxideAggregate. J Contemp Dent Pract. 2022; 23(10): 965-970.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Odovtos-Int J Dent Sc. 2025;27