2022, Number 3
<< Back Next >>
Rev Cub Oftal 2022; 35 (3)
Characterization of compressive lesions of the anterior visualpathway
González GJC, Hernández HO
Language: Spanish
References: 33
Page: 1-17
PDF size: 877.51 Kb.
ABSTRACT
Objective:
To determine the clinical-epidemiological characteristics of patients diagnosed with compressive lesions of the anterior visual pathway.
Methods:
A cross-sectional descriptive study was conducted during the period from May 2018 to March 2020 with 41 patients diagnosed with compressive syndrome of the anterior visual pathway attended at the Neurophthalmology Service of the Cuban Institute of Ophthalmology "Ramón Pando Ferrer".
Results:
The most frequent symptom was the progressive decrease of central vision. Tumor type lesions were found in 39 patients for 95.1 %. Hemianoptic defects were detected in the visual field of 45% of the sample and 33% presented diffuse decrease of retinal sensitivity.
Conclusions:
The majority of patients were female at middle ages of life. Tumor lesions predominated over vascular lesions. Pituitary macroadenomas and meningiomas were the most frequent etiologies and the most frequent site of compression was the optic chiasm. Decreased thickness of the macular ganglion cell complex was detected in the optical coherence tomography of most of the patients.
REFERENCES
Perkins A, Liu G. Brain tumors in adults: diagnosis and treatment. AM Fam Physiciam. 2016;93(3):211-7.
Yoneoka Y, Hatase T, Watanabe N, Jinguji S, Okada M, Takagi M, et al. Early morphological recovery of the optic chiasm is associated with excellent visual outcome in patients with compressive chiasmal syndrome caused by pituitary tumors. Neurol Res. 2015;37(1):1-8. DOI: 10.1179/1743132814Y.0000000407.
Cappabianca P, Alfieri A, Colao A, Ferone D, Lombardi G, de Divitiis E. Endoscopic endonasaltranssphenoidal approach: an additional reason in support of surgery in the management of pituitary lesions. Skull Base Surg. 2015;9(2):109-17. DOI: 10.1055/s-2008-1058157.
Hoyt WF. The human optic chiasm: A neuroanatomical review of current concepts, recent investigations and unsolved problems. In Smith JL, ed. The University of Miami Neuro-Ophthalmology Symposium. Springfield, Charles C Thomas; 2014. p. 1-47.
Ostrm QT, Glittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical report: primary brain and other central Nervus System Tumor diagnosed in the United States in 2011-2015. Neuro Oncol. 2018;20(suppl_14):iv1-iv86. DOI: 10-1093.neunonc.noi131.
Ntali G, Wass JA. Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary. 2018;21(2):111-8. DOI: 10.1007-11102-018-0869-3
Gatto F, Perez-Rivas LG, Olarescu NC, Khandeva P, Chachlaki K, Trivellin G, et al. Diagnosis and Treatment of Parasellar Lesions. Neuroendocrinology. 2020;110(9-10):728-39. DOI: 10.1159/000506905.
Karsy M, Guan J, Cohen A, Colman H, Jensen RL. Medical Management of Meningiomas: Current Status, Failed Treatments, and Promising Horizons. Neurosurg Clin N Am. 2016;27(2):249-60. DOI: 10.1016/j.nec.2015.11.002.
Cushing H. The meningiomas (dural endotheliomas): Their source and favoured seats of origin. Brain 2011;45:282-316.
Texacalidis P, Swed A, Mouchtouris N. Aneurysm formation, growth, and rupture: the biology and physics of cerebral aneurysms. World Neurosurg. 2019;130:277-84. DOI: 10.1016/j.wneu.2019.07.093.
Dandy W. Intracranial arterial aneurysms. Ithaca, NY: Comstock Publishing Associates, Cornell University Press; 2016.
Wang Y, Leng X, Xhou X, Li W, Siddiqui AH, Xiang J. Hemodinamics in the middle cerebral artery aneurysm before its growth and fatal rupture: case study and review of the literature. World Neurosurg. 2018;119:e395-e402. DOI: 10.1016/j.wneu.2018.07.174.
Kwon OK. Headache and aneurysm. Neuroimagen Clin N Am. 2019;29(2)255-60. DOI: 10.1016/j.nic.2019.01.004.
Vié AL, Raberot G. Modern neuro ophthalmological evaluation of patient with pituitary disorders. Best Pract Res Clin Endocrinol Metab. 2019;33(2):101279.
Ryu WHA, Starreveld Y, Burton JM, Liu J, Costello F, PITNET Study Group. The utility of Magnetic Resonance Imaging in assessing patient with pituitary tumors compressing the anterior visual pathway. J Nerophthalmol. 2017;37(3):230-238. DOI: 10.1097/WNO.0000000000000408.
Faje A, Tritos NA, Swearingen B, Klibanski A. Neuroendocrin disorders: pituitary imaging. Handb Clin Neurol. 2016;136:873-85. DOI: 10.1016/B978-0-444-53486-6.00044-2.
Hess CP, Dillon WP. Imaging the pituitary and parasellar region. Neurosurg Clin N Am. 2012;23(4):529-42. DOI: 10.1016/j.nec.2012.06.002.
Micieli JA, Newman NJ, Biousse V. The role of optical coherence tomography in the evaluation of compressive optic neurophathies. Curr Opin Neurol. 2019;32(1):115-23. DOI: 10.1097/WCO.0000000000000636.
Al-Louzi O, Prasad S, Nallery RM. Utility of optical coherence tomography in the evaluation of sellar and parasellar mass lesions. Curr Opin Endocrinol Diabetes Obes. 2018;25(4):274-84. DOI: 10.1097/MED.0000000000000415.
Blanc A, Stan Florian IS. Optical coherence tomography impacts in the evaluation of visual pathway tumors. Neurosurg Rev. 2018;41(2):415-26. DOI:10.1007/s10143-016-0772-1.
Colao A, Di Somma C, Pivonello R, Faggiano A, Lombardi G, Savastano S. Medical therapy for clinically non-functioning pituitary adenomas. Endocr Relat Cancer. 2008;15(4):905-15. DOI: 10.1677/ERC-08-0181.
McNeil KA. Epidemiology of brain tumors. Neurol Clin. 2016;34(4):981-98. DOI: 10.1016/j.ncl.2016.06.014.
Newman NJ, Slavin M, Newman SA. Optic disc pallor: A false localizing sign. Surv Ophthalmol. 2016;37:273-82. DOI: 10.1016/0039-6257(93)90010-5.
Hart WM Jr. Acquired dyschromatopsias. Surv Ophthalmol. 2004;32:10-31. DOI: 10.1016/0039-6257(87)90070-1.
Shaw HE, Smith JL. Cecocentral scotomas: Neuro-ophthalmologic considerations. In Smith JL, ed. Neuro-Ophthalmology Focus. New York: Masson; 2008:165-14.
Elkington SG. Pituitary adenoma. Preoperative symptomatology in a series of 260 patients. Br J Ophthalmol. 1968;52(4):322-8. DOI: 10.1136/bjo.52.4.322.
Ajiboye N, Chalouhi N, Starke RM, Zanaty M, Bell R. Unrupted cerebral aneurysm: evaluation and manegment. Scientific World Journal. 2015:954-54. DOI:10-1155/2015/254294.
Yum HR, Park SH, Park HY, Shin SY. Macular Ganglion Cell Analysis Determined by Cirrus HD Optical Coherence Tomography for Early Detecting Chiasmal Compression. PloS ONE. 2016;11(4), e0153064. DOI: 10.1371/journal.pone.0153064.
Kim KE, Yoo BW, Jeoung JW, Park KH. Long-Term Reproducibility of Macular Ganglion Cell Analysis in Clinically Stable Glaucoma Patients. Investigative ophthalmology & visual science. 2015;56(8):4857-64. DOI: 10.1167/iovs.14-16350.
Metwali H, Kniese K, Fahlbush R. Intraoperive monitoring of the integrity of anterior visual pathway: a methodologic review and metaanalysis. World Neurosurg. 2018;110:217-25. DOI: 10.1016/j.wneu.2017.11.039.
Danesh-Meyer HV, Yoon JJ, Lawlor M, Savino PJ. Visual loss and recovey in chiasmal compression. Prog retin Eye Res. 2019;73:100765. DOI: 10.1016/j.preteyeres. 2019.06.001.
Yang L, Qu Y, Lu W, liu F. Evaluation of macular ganglion cell complex and peripapillar retinal nerve fiber layer in primary craniopharyngioma by fourrier-domain optical coherence tomography. Med Sci Moint. 2016;22:2309-14. DOI: 10.12659/msm.896221.
Jeong AR, Kim EY, Kim NR. Preferential ganglion cell loss in the nasal hemiretina in patients with pituitary tumor. J Neuroophthalmol. 2016;36:152-5. DOI: 10.1097/WNO.0000000000000331.