2022, Number 3
<< Back Next >>
Rev Cub Oftal 2022; 35 (3)
Results of intraocular lens calculation with Holladay 2 and Barret Universal 2 formula
Vertía RZA, Simón RDC, Pérez CEC, Hernández LI, Bauza FY
Language: Spanish
References: 27
Page: 1-17
PDF size: 1000.45 Kb.
ABSTRACT
Objective:
To determine refractive outcomes with the Holladay 2 and Barret Universal 2 formulas from intraocular lens calculation in cataract surgery patients.
Methods:
A prospective and longitudinal descriptive study was performed with 60 eyes of 50 patients who underwent cataract surgery by phacoemulsification. The IOL Master 700 and Pentacam AXL with the Holladay 2 and Barret Universal 2 formula, respectively, were used to calculate the lens.
Results:
Female gender and age group older than 60 years predominated. Eyes larger than 26 mm showed the greatest difference between the dioptric power of the intraocular lens implanted according to Holladay and those smaller than 22 mm according to Barret Universal. Both groups presented a decrease of the spherical equivalent, being higher than 7 and 5 diopters in eyes larger than 26 mm postoperatively in both formulas. Postoperatively, there was an improvement in uncorrected and corrected visual acuity of more than 4 lines in the Snellen chart, independent of axial length, for both groups under study. No significant changes in keratometric cylinder. In 70.0% of the cases, the final refractive result was in the emmetropia range for the Holladay 2 group and 66.7% for the Barret Universal 2 group.
Conclusions:
Both formulas are useful for the calculation of the intraocular lens in all axial length ranges.
REFERENCES
Organización Mundial de la Salud. Ceguera y discapacidad visual. Ginebra: OMS; 2014 [actualizado 21/04/2016; acceso 21/04/2017]. Disponible en: Disponible en: http://www.who.int/mediacentre/factsheets/fs282/es/ 1.
Organización Panamericana de la Salud. Prevención de ceguera y salud ocular. Washington, DC.: OPS; 2016 [acceso 21/04/2019]. Disponible en: https://www3.paho.org/hq/index.php?option=com_content&view=article&id=244:prevention-blindness-eye-care-home&Itemid=42437&lang=es#gsc.tab=02.
Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MA, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221-34. DOI: 10.1016/S2214-109X(17)30393-5.
Koopman S. Cataract Surgery Devices - Global Pipeline Analysis, Competitive Landscape and Market Forecasts to 2017. London, UK: Global Data; 2013 [acceso 04/04/2018]. Disponible en: Disponible en: https://www.asdreports.com/shopexd.asp?id=25116 4.
Song JS, Yoon DY, Hyon JY, Jeon HS. Comparison of Ocular Biometry and Refractive Outcomes Using IOL Master 500, IOL Master 700, and LenStar LS900. Korean J Ophthalmol. 2020;34(2):126-32. DOI: 10.3341/kjo.2019.0102.
Jiménez-villar A, Maczynska E, Cichanski A, Wojtkowski M, Kaluzny BJ, Grulkowski I. High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics. Vision (Basel). 2019;10(7):3663-80. DOI: 10.1364/BOE.10.003663.
Hernández Silva JR, Pérez LLanes A, Galá Herrera LE, Ramos López M, Veitía Rovirosa Z, Padilla González C. Resultados del cálculo del poder de la lente intraocular mediante la fórmula de Haigis. Rev Cubana Oftalmol. 2010 [acceso 21/04/2018];23(3). Disponible en: http://www.bvs.sld.cu/revistas/oft/vol23_3_10/oft08310.htm7.
Varela García M, Mínguez Muro E, Castillo Laguarte J. Fórmulas para el cálculo de la potencia de las lentes intraoculares a implantar en cirugía de catarata. [Trabajo de Fin de grado]. [Zaragoza]: Facultad de Ciencias Óptica y Optometría. Universidad de Zaragoza. 2020 [acceso 26/07/2021]. Disponible en: https://zaguan.unizar.es/record/97980/files/TAZ-TFG-2020-3215.pdf8.
Michael C, Knorz, MD. Consider all aspects before using multifocal IOLs, surgeon says. [s. l.]. Ocular Surgery News Europe/Asia-Pacific Edition. 2008. p. 17.
Savini G, Hoffer KJ, Shammas HJ, Aramberri J, Huang J, Barboni P. Accuracy of a new swept-source optical coherence tomography biometer for IOL power calculation and comparison to IOL Master. Journal of Refractive Surgery. 2017;33(10):690-5. DOI: 10.3928/1081597X-20170721-05.
Huang J, Savini G, Hoffer KJ, Chen H, Lu W, Hu Q, et al. Repeatability and inter observer reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOL Master. British Journal of Ophthalmology. 2017 [acceso 10/04/2019];101(4):493-8. DOI: 10.1136/bjophthalmol-2016-308352.
Mengchan S. Biometric measurements in the crystalline lens: applications in cataract surgery. [tesis]. [España]: Universidad de Valladolid, Facultad de Medicina; 2017. DOI. 10.35376/10324/26558.
Lazarde Carpio Emir A. PENTACAM(r) AXL Aplicaciones [Tesis]. [Caracas, Venezuela] Instituto Oftalmológico IUMO. 2018 [acceso 10/05/2019] Disponible en: https://es.scribd.com/document/405162562/Software-Basico-PENTACAM13.
Cooke DL, MD Cooke TL. BA. Comparison of 9 intraocular lens power calculation formulas. J Cataract Refract Surg. 2016;42(8):1157-64. DOI: 10.1016/j.jcrs.2016.06.029.
Veitía ZA, Pla MA, Hernández IL, Pérez EC, Hormigó IF. Utilidad de las fórmulas Barrett Suite para el cálculo de las lentes intraoculares. Rev Cubana Oftalmol 2018;32(1). Disponible en: http://www.revoftalmologia.sld.cu/index.php/oftalmologia/article/view/68315.
Du YL, Wang G, Huang HC, Lin LY, Jin C, Liu LF, et al. Comparison of OA-2000 and IOLMaster 500 using in cataract patients with high myopia. J Ophthalmol. 2019;12(5):844-7. DOI: 10.18240/ijo.2019.05.23.
Castro Alonso FJ, Altemir Gómez I, Larrosa Poves JM. Análisis de factores biométricos relacionados con el cálculo de la potencia de LIOs monofocales en cirugía de catarata, medidos mediante reflectometría de baja coherencia óptica. [tesis]. [España]: Universidad de Zaragoza; 2016 [acceso 19/02/2019]. Disponible en: https://zaguan.unizar.es/record/48617?ln=es17.
Ministerio de Salud Pública. Anuario estadístico de Salud. La Habana: Dirección de Registros médicos de Cuba; 2019 [acceso 19/02/2019]. Disponible en: Disponible en: https://files.sld.cu/bvscuba/files/2020/05/Anuario-Electr%C3%B3nico-Espa%C3%B1ol-2019-ed-2020.pdf 18.
Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology. 2018;125(2):169-78. DOI: 10.1016/j.ophtha.2017.08.027.
Corelette C, Arndt C, Vidal J, Afriat M, Durbant E, Brugniart C, et al. Is Holladay 2 formula acurate enough for calculating intraocular lens power in non-standard eye? J Fr Ophthalmol. 2018;41(4):308-14. DOI: 10.1016/j.jfo.2017.09.014.
Shrivastava AK, Behera P, Kumar B, Nada S. Precision of intraocular lens power prediction in eyes shorter than 22 mm: An analysis of 6 formulas. J Cataract Refract Surg. 2018;44(11):1317-20. DOI: 10.1016/j.jcrs.2018.07.023.
Pacheco Sanz M. Biometría y cálculo de las lentes intraoculares [Tesis]. [Zaragoza]: Universidad Zaragoza; 2014 [acceso 03/11/2020]. Disponible en: https://docplayer.es/21920755-Biometria-y-calculo-de-lentes-intraoculares.html22.
Torres Hernández L. Estudio de técnicas biométricas y cálculo de la lente intraocular [Tesis]. [Valladolid]: Universidad de Valladolid; 2012 [acceso 03/11/2020];. Disponible en: http://uvadoc.uva.es/handle/10324/103423.
Reitblat O, Assia EI, Kleinmann G, Levy A, Barrett GD, Abulafia A. Accuracy of predicted refraction with multifocal intraocular lens power calculation formulas. Clin Exp Ophthalmol. 2015;43(4). DOI: 10.1111/ceo.12478.
Zhang Y, Liang X, Liu S, Lee J, Bhaskar S, Lam D. Accuracy of Intraocular Lens Power Calculation Formulas for Highly Myopic Eyes. J Ophthalmol. 2016;2016:1917268.1-7. DOI: 10.1155/2016/1917268.
Dalmagro JA, Urrets Zavali´a JA. Ecometría para el cálculo de las lentes intraoculares. Oftalmología Clínica y Experimental. 2016 [acceso 26/07/2021]. Disponible en: https://oftalmologos.org.ar/oce_anteriores/items/show/351.26.
Cabal P. Comparación de fórmulas biométricas para el cálculo del poder de la lente intraocular IQ. Colombia: Universidad Autónoma de Bucaramanga; 2018 [acceso 13/07/2021] Disponible en: Disponible en: http://hdl.handle.net/20.500.12749/1787 27.