medigraphic.com
SPANISH

Acta Pediátrica de México

Órgano Oficial del Instituto Nacional de Pediatría
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 1

<< Back Next >>

Acta Pediatr Mex 2025; 46 (1)

Cellular toxicity of quercetin and its effect on glucose movilization

Gómez GJ, García ÁR, Chávez PJL, Rivera EL, Alemón MR
Full text How to cite this article

Language: Spanish
References: 24
Page: 3-12
PDF size: 242.46 Kb.


Key words:

quercetin, cell death, glucose movilization, nutraceuticals, diabetes care.

ABSTRACT

Introductioón: Quercetin (QT) is a plant flavonoid with antioxidant and antidiabetic properties that could improve the treatment of children and adolescents with obesity and diabetes. It has recently been marketed as food supplements; however, the toxicity and safe doses of QT in humans have not been concluded.
Aim To determine the toxicity of QT in cultured healthy human cells and assess its effect on extracellular glucose movilization.
Materials and Methods: HA19 cells were grown to confluence in DMEM-F12 medium supplemented with 10% FBS, 1% antibiotic and antifungal, at 37oC with 5% CO2 atmosphere. They were exposed to QT concentrations of 0.3 to 30 µg/mL for 24 hours. Three presentations of quercetin were used: pure standard (QTS), food supplement (QTC) and aqueous extract of moringa (Mor). QT toxicity was assessed by staining of surviving cells with crystal violet, and extracellular glucose concentration by glucose oxidase activity.
Results: QTS caused cell death proportional to the increase in its concentration. QTC was more toxic at low concentrations. The QT in the plant extract (Mor) had a cytoprotective effect at the highest concentrations. QT induced glucose transport from the medium to the cells in all three presentations.
Conclusions: QT in commercial form (QTC) was more cytotoxic than the plant extract, so the flavonoid from a natural source could be safer to consume.


REFERENCES

  1. Vaidyanathan J, Choe S, Sahajwalla CG. Type 2 Diabetes inpediatrics and adults: thoughts from a clinical pharmacologyperspective. J Pharm Sci. 2012. 101(5): 1659-1671.

  2. Mehta V, Verma P, Sharma N, Sharma A, Thakur A, MalairamanU. Quercetin, ascorbic acid, caffeine and ellagicacid are more efficient than rosiglitazone, metformin andglimepiride in interfering with pathways leading to thedevelopment of neurological complications associatedwith diabetes: A comparative in-vitro study. Bull Fac PharmCairo Univ. 2017. 55(1): 115-121.

  3. Rajesh UR, Dhanaraj S. A critical review on quercetinbioflavonoid and its derivatives: Scope, synthesis, andbiological applications with future prospects. Arab J Chem.2023. 16: 104881.

  4. Hamilton KE, Rekman JF, Gunnink LK, Busscher BM, ScottJL, Tidball AM, Stehouwer NR, Johnecheck GN, LooyengaBD, Louters LL. Quercetin inhibits glucose transport bybinding to an exofacial site on GLUT1. Biochim. 2018.151: 107-114.

  5. Ebrahimpour S, Shahidi SB, Abbasi M, Tavakoli Z, EsmaeiliA. Quercetin-conjugated superparamagnetic iron oxidenanoparticles (QCSPIONs) increase Nrf2 expression viamiR-27a mediation to prevent memory dysfunction indiabetic rats. Sci Rep. 2020.18:15957.

  6. Mbikay M. Therapeutic Potential of Moringa oleifera Leavesin Chronic Hyperglycemia and Dyslipidemia: A Review.Front Pharmacol. 2012. 3 (24).

  7. Wang H, Fowler MI, Messenger DJ, Terry LA, Gu X, ZhouL, Liu R, Su J, Shi S, Ordaz-Ortiz JJ, Lian G, Berry MJ, WangS. Homoisoflavonoids are potent glucose transporter 2(GLUT2) inhibitors – a potential mechanism for the glucoseloweringproperties of Polygonatum odoratum. J Agric FoodChem. 2018. 66 (12): 3137-3145.

  8. Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G.Differential patterns of inhibition of the sugar transportersGLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol.2018. 152: 11-20.

  9. Liu S, Loo YT, Li Z, Ng K. Alginate-inulin-chitosan based microspheresalter metabolic fate of encapsulated quercetin,promote short chain fatty acid production, and modulatepig gut microbiota. Food Chem. 2023;418:135802.

  10. Lako J, Trenerry VC, Wahlqvist M, WattanapenpaiboonN, Sotheeswaran S, Premier R. Phytochemical flavonols,carotenoids and the antioxidant properties of a wide selectionof Fijian fruit, vegetables and other readily availablefoods. Food Chem. 2007. 101 (4): 1727-1741.

  11. Gupta S, Gupta R. Detection and quantification of quercetinin roots, leaves and flowers of Clerodendrum infortunatumL. Asian Pac J Trop Dis. 2012. 2 (2): S940-S943.

  12. Qi W, Qi W, Xiong D, Long M. Quercetin: Its AntioxidantMechanism, Antibacterial Properties and Potential Applicationin Prevention and Control of Toxipathy. Molecules.2022. 27 (19): 6545.

  13. Saad, H. A., Magdy, R., & Metwally, F. M. (2020). Effects of quercetinon behavioral and biochemical parameters in a mousemodel of autism. BMC Complementary Medicine and Therapies.20(1), 152. https://doi.org/10.1186/s12906-020-03057-0

  14. Biasutto L, Marotta E, Garbisa S, Zoratti M, Paradisi C.Determination of Quercetin and Resveratrol in WholeBlood—Implications for Bioavailability Studies. Molecules.2010. 15(9): 6570–6579.

  15. Zhang L, Angst E, Park JL, Moro A, Dawson DW, Reber HA,Eibl G, Hines OJ, Go VLW, Lu QY. Quercetin Aglycone IsBioavailable in Murine Pancreas and Pancreatic Xenografts.J Agric Food Chem. 2010. 58 (12): 7252-7257.

  16. Michaleas SN, Laios K, Tsoucalas G, Androutsos G. TheophrastusBombastus Von Hohenheim (Paracelsus) (1493–1541): The eminent physician and pioneer of toxicology.Toxicol Rep. 2021. 8: 411-414.

  17. Brower V. Nutraceuticals: Poised for a healthy slice of thehealthcare market? Nat Biotechnol. 1998. 16: 728-731.

  18. Alissa EM, Ferns GA. Functional Foods and Nutraceuticalsin the Primary Prevention of Cardiovascular Diseases. JNutr Metab. 2012. 569486.

  19. Kalra EK. Nutraceutical-Definition and Introduction. J AmAssoc Sci. 2003. 5: 27-28.

  20. Pandey M, Verma RK, Saraf SA. Nutraceuticals: new era ofmedicine and health. A J Pharm Clin Res. 2010;3 (1):11-15.

  21. Maiyo FC, Moodley R, Singh M. Cytotoxicity, Antioxidantand Apoptosis Studies of Quercetin-3-O Glucoside and4-(β-D-Glucopyranosyl-1→4-α-L-Rhamnopyranosyloxy)-Benzyl Isothiocyanate from Moringa oleifera. AnticancerAgents Med Chem. 2016;16(5): 648-656.

  22. Aliyu A, Shaari MR, Sayuti NSA, Reduan FH, SithambaramS, Mustapha NM, Shaari K, Hamzah HB. Moringa oleiferahydorethanolic leaf extract induced acute and sub-acutehepato-nephrotoxicity in female ICR-mice. Sci Progr.2021;104 (4): 368504211004272.

  23. Sreelatha S, Jeyachitra A, Padma PR. Antiproliferationand induction of apoptosis by Moringa oleifera leaf extracton human cancer cells. Food Chem Toxicol. 2011;49(6):1270-1275.

  24. Awad HM, Boersma MG, Boeren S, van der Woude H,van Zanden J, van Bladeren PJ, Vervoort J, Rietjens IMCM.Identification of o-quinone/quinone methide metabolitesof quercetin in a cellular in vitro system. FEBS Lett.2002;520:30-34.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Acta Pediatr Mex. 2025;46