medigraphic.com
SPANISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 3

<< Back Next >>

Rev Cubana Plant Med 2022; 27 (3)

Lipid and oxidative profile in Wistar rats after administration of lecithin from Glycine max L. Merr (soy)

Cala CL, Cruz VH, Reyes CM, Morris QHJ
Full text How to cite this article

Language: Spanish
References: 20
Page:
PDF size: 313.09 Kb.


Key words:

soy lecithin, lipid profile, oxidative stress, preclinical experimentation, Wistar rats.

ABSTRACT

Introduction: Soy lecithin is a dietary supplement with supposed benefits as an antioxidant and lipid-lowering agent.
Objective: To determine the preclinical effect of soy lecithin on the lipid profile and the oxidative state in Wistar rats.
Method: An experimental preclinical pharmacology study was carried out in the Basic Sciences Laboratory of the University of Medical Sciences of Santiago de Cuba and LABEX-CIM, in 2019. Soy lecithin was administered for 30 days, in doses considered as maximum and minimum to two experimental groups of Wistar rats, to be compared with a control group that received regular feeding. Lipid and oxidative profile values were determined and differences were established between the experimental groups using the Kruskal-Wallis test of independent samples, considering the level of significance less than 5%.
Results: The general reduction of the variables estimated as markers of Oxidative Stress can be seen in the administration groups, being more evident in the group of animals that received soy lecithin at the maximum dose. A tendency to stability of its values was observed in catalase in the three groups, with discrete intragroup variations.
Conclusions: Soy lecithin induced a state of oxidative stress associated with increased serum lipid levels in rats, probably related to inflammatory phenomena in the target tissues, which should be corroborated in future research.


REFERENCES

  1. Cala Calviño L, Sánchez Hechavarria ME, García Torres DS. Aspectos farmacológicos de la lecitina de soya y sus posibles aplicaciones médicas. MEDISAN. 2017 [acceso 12/11/2018];21(1):83-95. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S102930192017000100010&lng=es

  2. Lemus Rodríguez MZ, Chong Quesada A, Bosch Escobar J. Tableta masticable de lecitina de soya: de subproducto a producto farmacéutico. MEDISAN. 2017 [acceso 12/11/2019];21(5):[aprox. 0 p.]. Disponible en: http://medisan.sld.cu/index.php/san/article/view/901

  3. Ramírez Botero CM, Román Morales MO. Sobre los alimentos con actividad hipolipemiante. Rev Cubana Aliment Nutr. 2018 [acceso 31/05/2021];28(2):[aprox. 40 p.]. Disponible en: http://www.revalnutricion.sld.cu/index.php/rcan/article/view/612

  4. Picinin Antunes A, Lopes Cristiny G. Nutracêuticos no manejo das dislipidemias: terapia baseada em evidência. Rev Uningá Review. 2018 [acceso 31/05/2021];29(1):132-7. Disponible en: http://revista.uninga.br/index.php/uningareviews/issue/view/135

  5. Mañon Rossi W, Garrido G, Sellés A, Núñez J. Biomarcadores del estrés oxidativo en la terapia antioxidante. J Pharmacy Pharmacog Research. 2016 [acceso 31/05/2021];4(2):62-83. Disponible en: http://jppres.com/jppres/biomarcadores-del-estres-oxidativo-en-la-terapiaantioxidante/

  6. Ramírez Silva S. Criterios de selección para animales de laboratorio: una guía práctica para investigadores. Rev Sanidad Militar. 2017 [acceso 31/05/2021];56(1):4652. Disponible en: https://www.imbiomed.com.mx/articulo.php?id=1077

  7. Laboratorio de Ciencias Básicas Biomédicas. PNO 01-002. Determinación de Triglicéridos en Suero y Plasma. Laboratorio de Ciencias Básicas Biomédicas. 2017 [acceso 31/05/2021]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212016000300010

  8. Laboratorio de Ciencias Básicas Biomédicas. PNO 01-003. Determinación de Colesterol en Suero y Plasma. Laboratorio de Ciencias Básicas Biomédicas. 2017 [acceso 31/05/2021]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212016000300010

  9. Centro de Inmuno Ensayo. LDL-C y HDL-C enzimático. CIE. Centro de Inmuno Ensayo 2012 [acceso 31/05/2021]. Disponible en: http://www.cie.cu/media/inserts/es/quimicac/LDL%20C%20enzim%C3%A1tico.pdf

  10. Arteche Hidalgo L, García Sánchez M, Leyva Cerulia M, Martínez Martín S. Estandarización de valores de referencia de parámetros de estrés oxidativo. Rev Cub Med Mil. 2018 [acceso 31/05/2021];47(2). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S013865572018000200005&lng=es

  11. Lindblom Stephanie C. Impacts of feeding peroxidized oils on growth and oxidative status in swine and poultry [Tesis de grado]. USA: Iowa State University.

  12. Adel M, Gholaghaie M, Khanjany P, Citarasu T. Effect of dietary soybean lecithin on growth parameters, digestive enzyme activity, antioxidative status and mucosal immune responses of common carp (Cyprinus carpio). Aquacult Nutr. 2017 [acceso 31/05/2021];0:1- 8. Disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1111/anu.12483#accessDenialLayout

  13. Haghparast J, Moghanlou S, Mahmoud M, Ahmad I. The Effect of Soybean Lecithin on Immunity and Some Biochemical Indices of Salmo trutta caspius. Oceanography. 2018 [acceso 31/05/2021];9(34):4. Disponible en: http://joc.inio.ac.ir/article-1-1204en.pdf

  14. El Wahab AY, El Hamid A, El Syed A, de Oliveira MC, Nagadi Sameer A, Kamel I, et al. Physiological parameters and productive performance of rabbit does and their off springs with dietary supplementation of soy lecithin. Pesq Agropec Bras. 2018 [acceso 31/05/2021];53(9):1078-85. Disponible en: http://www.scielo.br/pdf/pab/v53n9/1678-3921-pab-53-09-1078.pdf

  15. Mohammed Alshammary S, Waleed Khaleel L. Ameliorative effect of soybean lecithin on the liver enzymes of rats supplemented with high colesterol. Kufa J Veterinary Medical Sciences. 2018 [acceso 31/05/2021];9(1):46-53. Disponible en: https://www.iasj.net/iasj?func=article&aId=148076

  16. El Wahab AY, El Syed A, El Hamid A, de Oliveira MV, Kamel I, Nagadi Sameer A, et al. Soy lecithin in diets for rabbit does improves productive and reproductive performance. Animal Science Papers and Reports. 2018 [acceso 31/05/2021];36(2):193-203. Disponible en: http://www.ighz.edu.pl/uploaded/FSiBundleContentBlockBundleEntityTranslatab FSiBundleContentBlockBundleEnti/filePath/1131/str193-204.pdf

  17. Hojsak Iva. Intravenous Lipid Emulsions and Risk of Hepatotoxicity in Infants and Children: a Systematic Review and Meta-analysis. ESPGHAN Committee on Nutrition Position Paper. 2016 [acceso 31/05/2021];62:776-92. Disponible en: http://www.espghan.org/fileadmin/user_upload/guidelines_pdf/Hep_Nutr/ESPG HAN_Committee_on_Nutrition_Position_Paper_.19.pdf

  18. Cruz Gilarte Y. Sobre las asociaciones entre los lípidos séricos y el riesgo cardiovascular. Rev Cubana Aliment Nutr. 2018 [acceso 31/05/2021];28(1):[aprox. 27 p.]. Disponible en: http://www.revalnutricion.sld.cu/index.php/rcan/article/view/532

  19. Li D, Ikaga R, Yamazaki T. Soya protein β-conglycinin ameliorates fatty liver and obesity in diet-induced obese mice through the down-regulation of PPARγ. British J Nutrition. 2018 [acceso 31/05/2021];119(11):1220-32. Disponible en: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/soyaprotein-conglycinin-ameliorates-fatty-liver-and-obesity-in-dietinduced-obesemice-through-the-downregulation-ofppar/8EEE475E1267F7A3FCA4AFE5A23315BD

  20. Mohammed AS, Waleed KL. Protective role of soybean lecithin in reducing hypercholesterolemia and DNA fragmentation inducing by high cholesterol in adult male rats. Kufa J Veterinary Medical Sciences. 2018 [acceso 31/05/2021];9(1):35-45. Disponible en: http://www.uokufa.edu.iq/journals/index.php/kjvs/article/view/7403




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2022;27