medigraphic.com
SPANISH

Revista Mexicana de Patología Clínica y Medicina de Laboratorio

ISSN 0185-6014 (Print)
Órgano oficial de difusión de la Federación Mexicana de Patología Clínica, AC y de la Asociación Latinoamericana de Patología Clínica/Medicina de Laboratorio
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2007, Number 1

<< Back Next >>

Rev Mex Patol Clin Med Lab 2007; 54 (1)

SIX SIGMA: determination of analytical goals based upon biological variability and technological evolution

Terrés-Speziale AM
Full text How to cite this article

Language: Spanish
References: 22
Page: 28-39
PDF size: 121.64 Kb.


Key words:

Quality management systems, SIX SIGMA, biological variability, analytical variability, relative variation coefficient.

ABSTRACT

Background: SIX SIGMA appeared in the industry in 1979 in order to obtain quality improvement manufacture processes to a level of 3.4 defects per million units (DPMU). It involves all the system from agreed goals establishment with customer’s requirements, to statistical data measurement, team work, and continuous quality improvement. Objective: To briefly review and document SIX SIGMA principles and tools in order to evaluate its applicability on the clinical laboratory, including the importance of comparing the impact of SIX SIGMA level with pre-established analytical goals according to the analytical coefficient of variation of Tonks and Aspen that have been used in clinical laboratories for decades as precision indicators. Material and methods: This is a revision of the basic concepts and the fundamental methods of SIX SIGMA, including definitions, formulas and practical exercises and examples on the indicators of analytical variability based on pre-established reference limits and ranks of biological variability for the analytical control of quality according to Tonks, Aspen and SIX SIGMA criteria, emphasizing the applicability of the relative coefficient of variation CVR as practical tool for analytical goal management on any laboratory test. Results: The criterion of Tonks is equivalent to25.0% of the normal rank representing a biological standard deviation. The Aspen criterion is equivalent to 50% of Tonks level representing 12.5% of the normal rank. In order to reach SIX SIGMA level it is necessary to improve Tonks level precision in six times, which implies to reduce the analytical variability to 4.2% of biological variability. In order to evaluate the relation that exists between biological variability (BV) and the analytical variability (AV) it is recommended to calculate quotient AV / BV which will give a result of ‹ 1.0 according to Tonks, ‹ 0.50 according to Aspen and ‹0.17 when SIX SIGMA level is reached. Discussion: The establishment of attainable and challenging analytical goals is the first step in any quality control system. The relative coefficient of variation calculation allows laboratories a reliable and easy approach on analytical goal establishment for any analyte with the only condition of having suitable reference limits for the attended population and the calculation of the analytical coefficient of variation for the specific test. The advance in quality improvement depends on the establishment of the actual level in which the laboratory is at the present moment. In order to improve quality it is necessary to improve good laboratory practices and to elevate the automation level of the laboratory. The achievement of analytical goals will be different depending on the level in which they are applied in such a way that the results that are obtained in the Internal Program of Control of Quality should be better than those than are reached on External Evaluation Quality Schemes, because for statistical reasons the confidence intervals vary inversely depending on the number of variables that take part in the process.


REFERENCES

  1. Harry M, Schroeder R. Six Sigma: The breakthrough management strategy revolutionizing the world’s top corporations. New York: Doubleday. 2000.

  2. Westgard JO. SIX SIGMA quality management and desirable laboratory imprecision. http://www.westgard.com/essay35.htm

  3. Barnett RN. Clinical laboratory statistics. Boston: Little Brown, 1971.

  4. Whitehead TP. Quality control in clinical chemistry. NY: John Willey and Sons, 1977: 135.

  5. IFCC Expert Panel on Theory of Reference Values. Part 1. The concept of reference values. Clin Chem 1979; 25: 1506.

  6. IFCC Expert Panel on Theory of Reference Values. Part 5. Statistical treatment of collected reference values. Determination of reference limits. J Clin Chem Clin Biochem 1982; 20: 841.

  7. IFCC Expert Panel on Theory of Reference Values. Part 6. Presentation of observed values related to reference values. J Clin Chem Clin Biochem 1983; 21: 749.

  8. Statland BE. Clinical decision levels for laboratory tests. NJ: Medical Economic Books, 1983.

  9. Terrés Speziale AM et al. Importancia de los criterios analíticos en el control de calidad. Rev Mex Pat Clin 1985; 32: 3.

  10. Terrés Speziale AM. Implications of informatics on health problems in Mexico. Baylor Univ Med Cent Proceedings 1989; 2: 2.

  11. Westgard JO, Burnett RW. Precision requirements for cost-effective operation of analytical processes. Clin Chem 1990; 36:1629-1632.

  12. Winkel P, Statland BE. Interpreting laboratory results: Reference values and decision making. In: Bernard HJ. Clinical diagnosis & management by laboratory methods. 18th ed. Philadelphia: WB Saunders, 1991.

  13. Castillo de Sánchez ML, Fonseca Yerena ME et al. Criterios de desempeño, control y evaluación. En: Mejoría continua de la calidad. Guía para los laboratorios clínicos de América Latina. México: Médica Panamericana, 1995: 53-85.

  14. Terrés Speziale AM, López Guzman J. Impacto de la informática en la reingeniería de los laboratorios clínicos mexicanos. Rev Mex Patol Clin 1995; 42: 104-111.

  15. Westgard JO. Basic Method Validation. Chapter 12: The decision on method performance in basic method validation. Madison, WI: Westgard QC, Inc., 1999: 125-134.

  16. Kaplan LA. Determination and application of desirable analytical performance goals: The ISO/TC 212 approach. Scand J Clin Lab Invest 1999; 59: 479-482.

  17. Petersen PH, Fraser CG, Kallner A, Kenny D. Strategies to set global analytical quality specifications in laboratory medicine. Scand J Clin Lab Invest 1999; 59: 7.

  18. Westgard JO. The need for a system of quality standards for modern quality management. Scand J Clin Lab Invest 1999; 59: 483-486.

  19. Terrés Speziale AM. Importancia de la variabilidad biológica y de la relevancia médica en ISO 15189. Rev Mex Pat Clin 2003; 50: 3.

  20. Terrés-Speziale AM. Estimación de la incertidumbre y de la variabilidad total en el laboratorio clínico. Rev Mex Patol Clin 2006; 53: 185-196.

  21. Terrés-Speziale AM. Requisitos para proveedores de esquemas de evaluación externa de la calidad. Rev Mex Patol Clin 2006; 53: 85-92

  22. Terrés-Speziale AM. Reingeniería de los programas de calidad. Rev Mex Patol Clin 2006; 53: 3-15




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Patol Clin Med Lab. 2007;54