medigraphic.com
SPANISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 2

<< Back Next >>

Rev Biomed 2025; 36 (2)

Chemoresistance associated with cytochrome P450 enzymes in lung cancer. Descriptive review

Valencia-Cervantes J, Sierra-Vargas MP
Full text How to cite this article

Language: Spanish
References: 66
Page: 39-49
PDF size: 143.43 Kb.


Key words:

Chemoresistance, cytochrome P450, lung cancer, drug metabolism.

ABSTRACT

Chemoresistance is the main reason for the limited efficacy of cancer therapy. It involves several signaling pathways, such as epigenetic factors, drug transporters, DNA damage repair mechanisms, cell death inhibition, epithelial-mesenchymal transition, and drug metabolism. Cytochrome P450 enzymes are catalytic hemoproteins that metabolize endogenous and exogenous compounds, and their expression influences treatment response. In this descriptive review, we examine the association between the expression or presence of cytochrome P450 enzyme polymorphisms and chemoresistance in lung cancer. A search was performed in PubMed and Science Direct databases using the terms “chemotherapy”, “lung cancer” and “CYP450”. Ex vivo and in vitro studies of human origin, published in the last 5 years, were included. Review, meta-analysis, and animal model studies were excluded. The search results revealed a total of 173 articles (2020-2024), including three cross-sectional studies involving a total of 179 patients (ex vivo) and two studies with in vitro models, in which the expression or presence of cytochrome P450 enzyme polymorphisms associated with treatment response was evaluated. Selected data describe that expression or polymorphisms of some cytochrome P450 enzyme isoforms, including 1A2, 2A6, 3A4, 1B1, 2C8, 2C9, 27C1, 2D6, are involved in chemoresistance in lung cancer.


REFERENCES

  1. Gonçalves AC, Richiardone E, Jorge J, Polónia B,Xavier CPR, et al. Impact of cancer metabolism ontherapy resistance - clinical implications. Drug ResistUpdat. 2021 Dec; 59: 100797-824. doi: 10.1016/j.drup.2021.100797.

  2. Alzahrani AM, Rajendran P. The Multifarious Linkbetween Cytochrome P450s and Cancer. OxidMed Cell Longev. 2020 Jan 3;2020:3028387. doi:10.1155/2020/3028387.

  3. Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al.Cytochrome P450 enzymes and drug metabolism inhumans. Int J Mol Sci. 2021 Nov; 22(23): 12808-24. doi:10.3390/ijms222312808.

  4. Guengerich FP. Inhibition of cytochrome P450 enzymesby drugs-molecular basis and practical applications.Biomol Ther (Seoul). 2022 Jan; 30(1):1-18. doi: 10.4062/biomolther.2021.102.

  5. Sung H, Ferlay J, Siegel RL, Laversanne M,Soerjomataram I, Jemal A, et al. Global cancer statistics2020: GLOBOCAN estimates of incidence and mortalityworldwide for 36 cancers in 185 countries. CA Cancer JClin. 2021 May; 71(3): 209-49. doi: 10.3322/caac.21660.

  6. Petrella F, Rizzo S, Attili I, Passaro A, Zilli T, MartucciF, et al. Stage III Non-Small-Cell Lung Cancer: AnOverview of Treatment Options. Curr Oncol. 2023 Mar

  7. 7;30(3):3160-75. doi: 10.3390/curroncol30030239.7. Susa ST, Hussain A, Preuss CV. Drug metabolism.[Updated 2023 Aug 17]. In: StatPearls [Internet].Treasure Island (FL): StatPearls Publishing; 2024 Jan-.https://www.ncbi.nlm.nih.gov/books/NBK442023/.

  8. Phang-Lyn S, Llerena VA. Biochemistry,Biotransformation. [Updated 2023 Aug 14]. In:StatPearls [Internet]. Treasure Island (FL): StatPearlsPublishing; 2023 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK544353/.

  9. Dong L, Zhuang X. Insights into Inhalation DrugDisposition: The Roles of Pulmonary Drug-MetabolizingEnzymes and Transporters. Int J Mol Sci. 2024 Apr25;25(9):4671. doi: 10.3390/ijms25094671.

  10. Nwabufo CK, Hoque MT, Yip L, Khara M, Mubareka S,Pollanen MS, et al. SARS-CoV-2 infection dysregulatesthe expression of clinically relevant drug metabolizingenzymes in Vero E6 cells and membrane transportersin human lung tissues. Front Pharmacol. 2023 Apr; 14:

  11. 1124693-709. doi: 10.3389/fphar.2023.1124693.11. Robinson JF, Hamilton EG, Lam J, Chen H, WoodruffTJ. Differences in cytochrome p450 enzyme expressionand activity in fetal and adult tissues. Placenta. 2020 Oct;100: 35-44. doi: 10.1016/j.placenta.2020.07.009.

  12. Evangelista EA, Cho CW, Aliwarga T, Totah RA.Expression and function of eicosanoid-producingcytochrome P450 enzymes in solid tumors. FrontPharmacol. 2020 Jun; 11:828-43. doi: 10.3389/fphar.2020.00828.

  13. Smith JN, Gaither KA, Pande P. Competitive metabolismof polycyclic aromatic hydrocarbons (PAHs): anassessment using in vitro metabolism and physiologicallybased pharmacokinetic (PBPK) modeling. Int J EnvironRes Public Health. 2022 Jul; 19(14): 8266-80. doi:10.3390/ijerph19148266.

  14. Gu Q, Chen F, Chen N, Wang J, Li Z, Deng X. Effectof EGCG on bronchial epithelial cell premalignantlesions induced by cigarette smoke and on its CYP1A1expression. Int J Mol Med. 2021 Dec; 48(6): 220-35.doi: 10.3892/ijmm.2021.5053.

  15. Mikstacka R, Dutkiewicz Z. New perspectives ofCYP1B1 inhibitors in the light of molecular studies.Processes 2021 May; 9(5): 817-37. https://doi.org/10.3390/pr9050817

  16. Liao D, Liu Z, Zhang Y, Liu N, Yao D, Cao L, et al.Polymorphisms of drug-metabolizing enzymes andtransporters contribute to the individual variations oferlotinib steady state trough concentration, treatmentoutcomes, and adverse reactions in epidermal growthfactor receptor-mutated non-small cell lung cancerpatients. Front Pharmacol. 2020 May; 11: 664-75. doi:10.3389/fphar.2020.00664.

  17. Liu L, Wang Q, Xie C, Xi N, Guo Z, Li M, et al. Druginteraction of ningetinib and gefitinib involving CYP1A1and efflux transporters in non-small cell lung cancerpatients. Br J Clin Pharmacol. 2021 Apr; 87(4): 2098-110. doi: 10.1111/bcp.14621.

  18. Kolesar J, Peh S, Thomas L, Baburaj G, MukherjeeN, Kantamneni R, et al. Integration of liquid biopsyand pharmacogenomics for precision therapy of EGFRmutant and resistant lung cancers. Mol Cancer. 2022Feb; 21(1): 61-83. doi: 10.1186/s12943-022-01534-8.

  19. Majam T, Sukasem C, Reungwetwattana T, ChansriwongP, Atasilp C, Trachu N, et al. CYP450 and drug effluxtransporters polymorphism influence clinical outcomesof Thai osimertinib-treated non-small cell lung cancerpatients. Front Pharmacol. 2023 Nov 6;14:1222435. doi:10.3389/fphar.2023.1222435.

  20. Lin H, Hu B, He X, Mao J, Wang Y, Wang J, etal. Overcoming Taxol-resistance in A549 cells: Acomprehensive strategy of targeting P-gp transporter,AKT/ERK pathways, and cytochrome P450 enzymeCYP1B1 by 4-hydroxyemodin. Biochem Pharmacol.2020 Jan;171:113733. doi: 10.1016/j.bcp.2019.113733.

  21. Vrzal R. Genetic and enzymatic characteristics ofCYP2A13 in relation to lung damage. Int J Mol Sci. 2021Nov; 22(22): 12306-21. doi: 10.3390/ijms222212306.

  22. Langmia IM, Just KS, Yamoune S, Brockmöller J,Masimirembwa C, Stingl JC. CYP2B6 functionalvariability in drug metabolism and exposure acrosspopulations-implication for drug safety, dosing, andindividualized therapy. Front Genet. 2021 Jul; 12:692234-55. doi: 10.3389/fgene.2021.692234.

  23. Hofman J, Vagiannis D, Chen S, Guo L. Roles ofCYP3A4, CYP3A5 and CYP2C8 drug-metabolizingenzymes in cellular cytostatic resistance. Chem BiolInteract. 2021 May; 340: 109448-59. doi: 10.1016/j.cbi.2021.109448.

  24. Fatunde OA, Brown SA. The role of CYP450 drugmetabolism in precision cardio-oncology. Int J Mol Sci.2020 Jan; 21(2): 604-30. doi: 10.3390/ijms21020604.

  25. Liu YN, Chen J, Wang J, Li Q, Hu GX, Cai JP, et al.Effects of drug-drug interactions and CYP3A4 variantson alectinib metabolism. Arch Toxicol. 2023 Aug; 97(8):2133-42. doi: 10.1007/s00204-023-03524-1

  26. Tugnait M, Gupta N, Hanley MJ, Sonnichsen D, KersteinD, Dorer DJ, et al. Effects of strong CYP2C8 or CYP3Ainhibition and CYP3A induction on the pharmacokineticsof brigatinib, an oral anaplastic lymphoma kinaseinhibitor, in healthy volunteers. Clin Pharmacol DrugDev. 2020 Feb; 9(2): 214-23. doi: 10.1002/cpdd.723.

  27. Nebot N, Won CS, Moreno V, Muñoz-Couselo E, LeeDY, Gasal E, et al. Evaluation of the effects of repeatdosedabrafenib on the single-dose pharmacokinetics ofrosuvastatin (OATP1B1/1B3 substrate) and midazolam(CYP3A4 substrate). Clin Pharmacol Drug Dev. 2021Sep; 10(9): 1054-63. doi: 10.1002/cpdd.937.

  28. Chen J, O’Gorman MT, James LP, Klamerus KJ,Mugundu G, Pithavala YK. Pharmacokinetics oflorlatinib after single and multiple dosing in patientswith anaplastic lymphoma kinase (ALK)-positive nonsmallcell lung cancer: results from a global phase I/IIstudy. Clin Pharmacokinet. 2021 Oct; 60(10): 1313-24.doi: 10.1007/s40262-021-01015-z.

  29. Stypinski D, Fostvedt L, Lam JL, Vaz A, JohnsonTR, Boerma JS, et al. Metabolism, excretion, andpharmacokinetics of lorlatinib (PF-06463922) andevaluation of the impact of radiolabel position andother factors on comparability of data across 2 ADMEstudies. J Clin Pharmacol. 2020 Sep; 60(9): 1254-67.doi: 10.1002/jcph.1621.

  30. Højer Wang L, Wehland M, Wise PM, Infanger M, GrimmD, Kreissl MC. Cabozantinib, vandetanib, pralsetiniband selpercatinib as treatment for progressed medullarythyroid cancer with a main focus on hypertension asadverse effect. Int J Mol Sci. 2023 Jan; 24(3): 2312-29.https://doi.org/10.3390/ijms24032312.

  31. Markham A. Selpercatinib: First approval. Drugs. 2020Jul; 80(11): 1119-24. doi: 10.1007/s40265-020-01343-7.

  32. Abdelhameed AS, Attwa MW, Kadi AA. Identificationof iminium intermediates generation in the metabolismof tepotinib using LC-MS/MS: in silico and practicalapproaches to bioactivation pathway elucidation.Molecules. 2020 Oct; 25(21): 5004-20. https://doi.org/10.3390/molecules25215004.

  33. Collins JM, Lester H, Shabnaz S, Wang D. A frequentCYP2D6 variant promotes skipping of exon 3 andreduces CYP2D6 protein expression in human liversamples. Front Pharmacol. 2023 Jul; 14: 1186540-52.doi: 10.3389/fphar.2023.1186540.

  34. Luong TT, McAnulty MJ, Evers DL, Reinhardt BJ, WeinaPJ. Pre-clinical drug-drug interaction (DDI) of gefitinibor erlotinib with cytochrome P450 (CYP) inhibitingdrugs, fluoxetine and/or losartan. Curr Res Toxicol. 2021Jun; 2: 217-24. doi: 10.1016/j.crtox.2021.05.006.

  35. Vagiannis D, Budagaga Y, Morell A, Zhang Y, NovotnáE, Skarka A, et al. Tepotinib inhibits several drug effluxtransporters and biotransformation enzymes: the role indrug-drug interactions and targeting cytostatic resistancein vitro and ex vivo. Int J Mol Sci. 2021 Nov; 22(21):11936-53. doi: 10.3390/ijms222111936.

  36. Chen X, Isambert N, López-López R, Giovannini M,Pognan N, Kapoor S, et al. Effect of capmatinib on thepharmacokinetics of substrates of CYP3A (midazolam)and CYP1A2 (caffeine) in patients with METdysregulatedsolid tumours. Br J Clin Pharmacol. 2023Mar; 89(3): 1046-55. doi: 10.1111/bcp.15544.

  37. Luo R, Ge C, Xiao X, Song J, Miao S, Tang Y, et al.Identification of genetic variations associated withdrug resistance in non-small cell lung cancer patientsundergoing systemic treatment. Brief Bioinform. 2021Nov 5;22(6):bbab187. doi: 10.1093/bib/bbab187.

  38. Jia L, Gao F, Hu G, Fang Y, Tang L, Wen Q, et al. Anovel cytochrome P450 2E1 inhibitor Q11 is effectiveon lung cancer via regulation of the inflammatorymicroenvironment. Adv Sci (Weinh). 2023 Dec; 10(35):e2303975-88. doi: 10.1002/advs.202303975.

  39. Harjumäki R, Pridgeon CS, Ingelman-Sundberg M.CYP2E1 in alcoholic and non-alcoholic liver injury.Roles of ROS, reactive intermediates and lipid overload.Int J Mol Sci. 2021 Jul; 22(15): 8221-41. doi: 10.3390/ijms22158221.

  40. Klyushova LS, Perepechaeva ML, Grishanova AY. Therole of CYP3A in health and disease. Biomedicines.2022 Oct; 10(11): 2686-738. doi: 10.3390/biomedicines10112686.

  41. Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, et al.Metabolism pathways of arachidonic acids: mechanismsand potential therapeutic targets. Signal Transduct TargetTher. 2021 Feb; 6(1): 94-124. doi: 10.1038/s41392-020-00443-w.

  42. Esteves F, Rueff J, Kranendonk M. The central role ofcytochrome P450 in xenobiotic metabolism-a briefreview on a fascinating enzyme family. J Xenobiot. 2021Jun; 11(3): 94-114. doi: 10.3390/jox11030007.

  43. Hurtado FK, de Braud F, De Castro Carpeño J, de MiguelLuken MJ, Wang D, Scott J, et al. Effect of ceritinib onthe pharmacokinetics of coadministered CYP3A and 2C9substrates: a phase I, multicenter, drug-drug interactionstudy in patients with ALK + advanced tumors. CancerChemother Pharmacol. 2021 Apr; 87(4): 475-86. doi:10.1007/s00280-020-04180-3.

  44. Bland AR, Shrestha N, Rosengren RJ, Ashton JC. Doescrizotinib auto-inhibit CYP3A in vivo. Pharmacology.2020 May; 105(11-12): 715-18. doi: 10.1159/000506996.

  45. Piscitelli J, Chen J, LaBadie RR, Salageanu J, ChungCH, Tan W. The effect of hepatic impairment on thepharmacokinetics of dacomitinib. Clin Drug Investig.2022 Mar; 42(3): 221-35. doi: 10.1007/s40261-022-01125-x.

  46. van der Heijden LT, Ribbers CA, Vermunt MAC, PluimD, Acda M, Tibben M, et al. Is higher docetaxel clearancein prostate cancer patients explained by higher CYP3A?An in vivo phenotyping study with midazolam. J ClinPharmacol. 2024 Feb; 64(2): 155-63. doi: 10.1002/jcph.2362.

  47. Meneses-Lorente G, Bentley D, Guerini E, KowalskiK, Chow-Maneval E, Yu L, et al. Characterization ofthe pharmacokinetics of entrectinib and its active M5metabolite in healthy volunteers and patients with solidtumors. Invest New Drugs. 2021 Jun; 39(3): 803-11. doi:10.1007/s10637-020-01047-5.

  48. Gupta N, Largajolli A, Witjes H, Diderichsen PM,Zhang S, Hanley MJ, et al. Mobocertinib dose rationalein patients with metastatic NSCLC with EGFR exon 20insertions: exposure-response analyses of a pivotal phaseI/II study. Clin Pharmacol Ther. 2022 Aug; 112(2): 327-34. doi: 10.1002/cpt.2622.

  49. Dhyani P, Quispe C, Sharma E, Bahukhandi A, SatiP, Attri DC, et al. Anticancer potential of alkaloids: akey emphasis to colchicine, vinblastine, vincristine,vindesine, vinorelbine and vincamine. Cancer Cell Int.2022 Jun; 22(1): 206-26. doi: 10.1186/s12935-022-02624-9.

  50. Moreno I, Hernández T, Calvo E, Fudio S, Kahatt C,Fernández C, et al. Impact of a moderate CYP3A4inducer (Bosentan) on lurbinectedin pharmacokineticsand safety in patients with advanced solid tumors: anopen-label, two-way, crossover, phase Ib drug-druginteraction study. Pharmaceuticals (Basel). 2024 Jan;17(2): 182-97. doi: 10.3390/ph17020182.

  51. Incze E, Mangó K, Fekete F, Kiss ÁF, Póti Á, Harkó T, etal. Potential association of cytochrome P450 copy numberalteration in tumour with chemotherapy resistance inlung adenocarcinoma patients. Int J Mol Sci. 2023 Aug;24(17): 13380-96. doi: 10.3390/ijms241713380.

  52. Liu X, Jia Y, Shi C, Kong D, Wu Y, Zhang T, et al.CYP4B1 is a prognostic biomarker and potentialtherapeutic target in lung adenocarcinoma. PLoS One.2021 Feb 16;16(2):e0247020. doi: 10.1371/journal.pone.0247020.

  53. Yin Y, He M, Huang Y, Xie X. Transcriptomic analysisidentifies CYP27A1 as a diagnostic marker for theprognosis and immunity in lung adenocarcinoma. BMCImmunol. 2023 Oct 10;24(1):37. doi: 10.1186/s12865-023-00572-1.

  54. Mo HY, Wei QY, Zhong QH, Zhao XY, Guo D, HanJ, et al. Cytochrome P450 27C1 Level Dictates LungCancer Tumorigenicity and Sensitivity towards MultipleAnticancer Agents and Its Potential Interplay with theIGF-1R/Akt/p53 Signaling Pathway. Int J Mol Sci. 2022Jul 16;23(14):7853. doi: 10.3390/ijms23147853.

  55. Guo H, Zeng B, Wang L, Ge C, Zuo X, Li Y, etal. Knockdown CYP2S1 inhibits lung cancer cellsproliferation and migration. Cancer Biomark.2021;32(4):531-9. doi: 10.3233/CBM-210189.

  56. Hecht SS. Tobacco carcinogens, their biomarkersand tobacco-induced cancer. Nat Rev Cancer. 2003Oct;3(10):733-44. doi: 10.1038/nrc1190.

  57. Holme JA, Vondráček J, Machala M, Lagadic-GossmannD, Vogel CFA, Le Ferrec E, et al. Lung cancer associatedwith combustion particles and fine particulate matter(PM2.5) - The roles of polycyclic aromatic hydrocarbons(PAHs) and the aryl hydrocarbon receptor (AhR).Biochem Pharmacol. 2023 Oct;216:115801. doi:10.1016/j.bcp.2023.115801.

  58. Kang D, Jung IB, Lee SY, Park SJ, Kwon SJ, ParkDH, et al. Particulate matter less than 10 μm (PM10)activates cancer related genes in lung epithelial cells.Inhal Toxicol. 2020 Nov-Dec;32(13-14):487-93. doi:10.1080/08958378.2020.1850936.

  59. Zhang N, Qiu M, Yao S, Zhou H, Zhang H, Jia Y, et al.Circ0087385 promotes DNA damage in benzo(a)pyreneinducedlung cancer development by upregulatingCYP1A1. Toxicol Sci. 2024 Mar 26;198(2):221-32. doi:10.1093/toxsci/kfae017.

  60. Du M, Xin J, Zheng R, Yuan Q, Wang Z, Liu H, et al.CYP2A6 Activity and Cigarette Consumption Interactin Smoking-Related Lung Cancer Susceptibility. CancerRes. 2024 Feb 15;84(4):616-25. doi: 10.1158/0008-5472.CAN-23-0900.

  61. Ma X, Zang X, Yang L, Zhou W, Li Y, Wei J, et al.Genetic polymorphisms in CYP2B6 may be associatedwith lung cancer risk in the Chinese Han population.Expert Rev Respir Med. 2023 Dec;17(12):1297-305.doi: 10.1080/17476348.2024.2302199.

  62. Jia Z, Zhou W, Zhang G, Fu J, Li D, Ren L. CYP3A4genetic variants are associated with susceptibility ofnon-small cell lung cancer in a Shaanxi Han population.Genomics. 2020 Sep;112(5):3465-72. doi: 10.1016/j.ygeno.2020.05.023.

  63. He R, Li M, Li A, Dang W, Yang T, Li J, et al. CYP4F2and CYP3A5 gene polymorphisms and lung cancerin Chinese Han population. Clin Exp Med. 2020Aug;20(3):461-8. doi: 10.1007/s10238-020-00631-6.

  64. Xiong Q, Jiao Y, Yang P, Liao Y, Gu X, Hu F, etal. The association study between CYP24A1 genepolymorphisms and risk of liver, lung and gastriccancer in a Chinese population. Pathol Res Pract. 2020Dec;216(12):153237. doi: 10.1016/j.prp.2020.153237.

  65. Ni KD, Liu JY. The functions of cytochrome P450ω-hydroxylases and the associated eicosanoids ininflammation-related diseases. Front Pharmacol. 2021Sep; 12: 716801-15. doi: 10.3389/fphar.2021.716801.

  66. Wang Z, Yong Chan EC. Inhibition of cytochromeP450 2J2-mediated metabolism of rivaroxaban andarachidonic acid by ibrutinib and osimertinib. DrugMetab Dispos. 2022 Oct; 50(10): 1332-41. doi: 10.1124/dmd.122.000928.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2025;36