medigraphic.com
SPANISH

Acta Ortopédica Mexicana

ISSN 2992-8036 (Electronic)
ISSN 2306-4102 (Print)
Órgano Oficial del Colegio Mexicano de Ortopedia y Traumatología
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 4

<< Back Next >>

Acta Ortop Mex 2025; 39 (4)

Innovation in complex hip arthroplasty (Perthes sequel and developmental dysplasia of the hip): use of 3D models in surgical planning and simulation. Functional and radiographic results. Pilot study

Godoy-Monzón D, Fernández SE, Pascual-Espinosa J, Jiménez-Baquero J
Full text How to cite this article 10.35366/120453

DOI

DOI: 10.35366/120453
URL: https://dx.doi.org/10.35366/120453

Language: Spanish
References: 32
Page: 212-219
PDF size: 1535.84 Kb.


Key words:

3D printed models, total hip arthroplasty, short stem, 3D titanium cup.

ABSTRACT

Introduction: anatomical deformities such as developmental dysplasia of the hip (DDH) and Perthes disease represent a challenge for reconstruction. The use of 3D-printed models can be helpful for assessing the deformity, bone mass, implant size, and orientation. Objectives: to prospectively evaluate the outcomes of 3D simulation in primary total hip arthroplasty. Material and methods: between January 2019 and March 2020, 22 patients received a trabecular titanium cup and a neck preserving stem after preoperative planning with 3D plastic models and surgery simulation. Inclusion criteria: sequelae of Perthes, hip dysplasia type I and II Crowe classification. Exclusion criteria: fractures, previous infection, remaining metal implants. Demographic data, surgery time, blood loss, and complications were recorded. Preoperative and postoperative Harris Hip Score (HHS) and subjective satisfaction using the Roles and Maudsley scale were evaluated, along with radiographic findings and Moore's criteria for osteointegration. Results: the average patient age was 35 years (range: 18-57), with 15 women and seven men. The 3D modeling process, from CT scan acquisition to final model production, took an average of 3.4 hours, and the surgery simulation lasted an average of 32 minutes. In all cases, the acetabular cup size was correct, with only one discrepancy in the femoral stem size. The average follow-up was 40.7 months. The average HHS increased from 37.5 ± 5.8 preoperatively to 90.0 ± 2.3 at the final follow-up. The average surgery time was 71 minutes, and the average blood loss was 260 ml. Complications included one case of temporary paresthesia (resolved by 50 days postoperatively), one superficial infection, and one deep infection. All components were stable at the final follow-up. Conclusions: 3D simulation allowed for accurate implant placement with significant improvement in both functional and subjective scores.


REFERENCES

  1. Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007; 370(9597): 1508-19.

  2. Knight SR, Aujla R, Biswas SP. Total hip arthroplasty - over 100 years of operative history. Orthop Rev (Pavia). 2011; 3(2): e16.

  3. Gallart X, Riba J, Fernández-Valencia JA, Bori G, Munoz-Mahamud E, Combalia A. Hip prostheses in young adults: Surface prostheses and short-stem prostheses. Rev Esp Cir Ortop Traumatol. 2018; 62(2): 142-52.

  4. Pivec R, Johnson AJ, Mears SC, Mont MA. Hip arthroplasty. Lancet. 2012; 380(9855): 1768-77.

  5. Moya D, Gobbato B, Valente S, Roca R. Uso de planificación preoperatoria e impresión 3D en ortopedia y traumatología: ingresando en una nueva era. Acta Ortop Mex. 2022; 36(1): 39-47.

  6. Pellicci PM, Bostrom M, Poss R. Posterior approach to total hip replacement using enhanced posterior soft tissue repair. Clin Orthop Relat Res. 1998; (355): 224-8.

  7. Lara-Taranchenko Y, Pujol O, González-Morgado D, Hernández A, Barro V, Soza D. Validation of the Spanish version of the modified Harris score. Rev Esp Cir Ortop Traumatol. 2024; 68(2): 121-7.

  8. Roles NC, Maudsley RH. Radial tunnel syndrome: resistant tennis elbow as a nerve entrapment. J Bone Joint Surg Br. 1972; 54(3): 499-508.

  9. Ackland MK, Bourne WB, Uhthoff HK. Anteversion of the acetabular cup. Measurement of angle after total hip replacement. J Bone Joint Surg Br. 1986; 68(3): 409-13.

  10. Lewinnek GE, Lewis GL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978; 60(2): 217-20.

  11. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976; (121): 20-32.

  12. Gruen TA, McNeice GM, Amstutz HC. Modes of failure of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res. 1979; (141): 17-27.

  13. Loudon JR, Charnley J. Subsidence of the femoral prosthesis in total hip replacement in relation to the design of the stem. J Bone Joint Surg Br. 1980; 62(5): 450-3.

  14. Kjellberg M, Al-Amiry B, Englund E, Sjodén GO, Sayed-Noor AS. Measurement of leg length discrepancy after total hip arthroplasty: The reliability of a plain radiographic method compared to CT-scanogram. Skeletal Radiol. 2012; 41(2): 187-91.

  15. Brooker AF, Bowerman JW, Robinson RA, Riley LH. Ectopic ossification following total hip replacement: Incidence and a method of classification. J Bone Joint Surg Am. 1973; 55(8): 1629-32.

  16. Moore MS, McAuley JP, Engh CA. Radiographic signs of osseointegration in porous-coated acetabular components. Clin Orthop Relat Res. 2006; 444: 176-83.

  17. Yang Y, Zuo J, Liu T, Xiao J, Liu S, Gao Z. Morphological analysis of true acetabulum in hip dysplasia (Crowe classes I-IV) via 3-D implantation simulation. J Bone Joint Surg Am. 2017; 99(17): e92.

  18. Saleh KJ, Bear B, Bostrom M, Wright TM, Salvati EA. Initial stability of press-fit acetabular components: An in vitro biomechanical study. Am J Orthop (Belle Mead NJ). 2008; 37(10): 519-22.

  19. Geng X, Li Y, Li F, Wang X, Zhang K, Liu Z, et al. A new 3D printing porous trabecular titanium metal acetabular cup for primary total hip arthroplasty: A minimum 2-year follow-up of 92 consecutive patients. J Orthop Surg Res. 2020; 15(1): 383.

  20. Perticarini L, Zanon G, Rossi SMP, Traina F, Laus M, Baldini N. Clinical and radiographic outcomes of a trabecular titanium acetabular component in hip arthroplasty: Results at minimum 5 years follow-up. BMC Musculoskelet Disord. 2015; 16: 375.

  21. Morgan A, Atkinson HD, Davis ET, Ranawat AS, Kane P, Singh PJ. Improved outcomes in total hip arthroplasty with 3D printed models: A comparative study. J Arthroplasty. 2020; 35(3): 1234-40.

  22. Dammerer D, Keiler A, Herrnegger S, Putzer D, Strasser S, Liebensteiner M. Accuracy of digital templating of uncemented total hip arthroplasty at a certified arthroplasty center: A retrospective comparative study. Arch Orthop Trauma Surg. 2022; 142(10): 2471-80.

  23. Godoy-Monzón D, García-Mansilla A, Jiménez-Baquero J, Fernández-Rozas E, Pascual JM, Campelo D. ¿Cuándo se reanuda la conducción después del reemplazo total de cadera primario? Acta Ortop Mex. 2023; 37(2): 94-8.

  24. Godoy-Monzon D, Martinez S, Perez Torres J, Avendano Duran FE, Pascual JM, Garcia-Mansilla AM. Primary outcomes of a femoral neck-preserving stem: A multicentre clinical-radiological analysis at 5-year follow-up. Eur J Orthop Surg Traumatol. 2022; 32(3): 533-40.

  25. Kheir MM, Drayer NJ, Chen AF. An update on cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg Am. 2020; 102(14): 1271-82.

  26. Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH. Structural and cellular assessment of bone quality of proximal femur. Bone. 1993; 14(3): 231-42.

  27. Wittenberg RH, Steffen R, Windhagen H, Bücking P, Wilcke A. Five-year results of a cementless short-hip-stem prosthesis. Orthop Rev (Pavia). 2013; 5(1): e4.

  28. Jahnke A, Wiesmair A, Fonseca Ulloa CA, Ahmed GA, Rickert M, Ishaque BA. Outcome of short- to medium-term migration analysis of a cementless short stem total hip arthroplasty using EBRA-FCA: A radiological and clinical study. Arch Orthop Trauma Surg. 2020; 140(2): 247-53.

  29. Wang C, Xiao H, Yang W, Zhang Z, Ding Z, Yang Y. Accuracy and practicability of a patient-specific guide using acetabular superolateral rim during THA in Crowe II/III DDH patients: A retrospective study. J Orthop Surg Res. 2019; 14(1): 19.

  30. Ait Mokhtar M. Postero-posterolateral approach in total hip arthroplasty. Int Orthop. 2020; 44(12): 2577-85.

  31. Uriarte I, Moreta J, Mosquera J, Legarreta MJ, Aguirre U, Martínez de Los Mozos JL. Debridement, antibiotics and implant retention for early periprosthetic infections of the hip: outcomes and influencing factors. Hip Pelvis. 2019; 31(3): 158-165. doi: 10.5371/hp.2019.31.3.158.

  32. Valles-Figueroa JF, Rodríguez-Reséndiz F, Muñoz-Arreola FJ, Dávila-Olguín A. Estudio comparativo de los eventos adversos entre el abordaje posterolateral y lateral directo para artroplastía primaria de cadera no cementada en pacientes mayores de 65 años con fracturas del cuello. Acta Ortop Mex. 2015; 29(1): 1-12.



EVIDENCE LEVEL

IV, estudio prospectivo de serie de casos




Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Acta Ortop Mex. 2025 Jul-Ago;39