2024, Number 6
<< Back
Rev Mex Pediatr 2024; 91 (6)
The use of artificial intelligence in pediatric oncology: advances and perspectives
Hernández-Zárate A, Valdez-Álvarez A
Language: Spanish
References: 28
Page: 244-247
PDF size: 291.45 Kb.
ABSTRACT
Artificial intelligence (AI) is revolutionizing some areas of medicine. In pediatric oncology, there are already tools that aim to improve the diagnosis, treatment, and prognosis of children with cancer. This article reviews recent advances in the application of AI in this field, focusing on specific programs and applications in certain types of neoplasia in pediatric patients. It also analyzes how these systems are used, the diseases in which they are applied, and the results obtained, in addition to addressing the ethical and practical challenges associated with their implementation.
REFERENCES
Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014; 64(2): 83-103.
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72(1): 7-33.
Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J et al. Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5—a population-based study. Lancet Oncol. 2014; 15(1): 35-47.
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019; 25(1): 44-56.
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K et al. A guide to deep learning in healthcare. Nat Med. 2019; 25(1): 24-29.
Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020; 395(10230): 1146-1162.
Zhong P, Hong M, He H, Zhang J, Chen Y, Wang Z et al. Diagnosis of acute leukemia by multiparameter flow cytometry with the assistance of artificial intelligence. Diagnostics (Basel). 2022; 12(4): 827. doi: 10.3390/diagnostics12040827
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neuro Oncol. 2022; 24(Suppl 5): v1-v95.
Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017; 36: 61-78.
Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010; 362(23): 2202-2211.
Samim A, Tytgat GAM, Bleeker G, Wenker STM, Chatalic KLS, Poot AJ et al. Nuclear medicine imaging in neuroblastoma: current status and new developments. J Pers Med. 2021; 11(4): 270.
Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L et al. The Pediatric Cancer Genome Project. Nat Genet. 2012; 44(6): 619-622.
Grobner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA et al. The landscape of genomic alterations across childhood cancers. Nature. 2018; 555(7696): 321-327.
Sheng L, Zhuang L, Yang J, Zhang D, Chen Y, Zhang J et al. Radiation pneumonia predictive model for radiotherapy in esophageal carcinoma patients. BMC Cancer. 2023; 23(1): 988. doi: 10.1186/s12885-023-11499-6.
Mondal C, Hasan MK, Jawad MT, Dutta A, Islam MR, Awal MA et al. Acute Lymphoblastic Leukemia detection from microscopic images using weighted ensemble of Convolutional Neural Networks. Preprints. 2021. doi: 10.20944/preprints202105.0429.v1
Sarhan AM. Brain tumor classification in magnetic resonance images using deep learning and wavelet transform. J Biomed Sci Eng. 2020; 13(6): 102-112.
Char DS, Shah NH, Magnus D. Implementing machine learning in health care-addressing ethical challenges. N Engl J Med. 2018; 378(11): 981-983.
European Parliament. Regulation (EU) 2016/679 (General Data Protection Regulation). Off J Eur Union. 2016; L119: 1-88.
Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019; 366(6464): 447-453.
Beauchamp TL, Childress JF. Principles of biomedical ethics. 8th ed. New York, NY: Oxford University Press; 2019.
Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2019; 9(4): e1312.
Samek W, Wiegand T, Müller K-R. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv [cs.AI]. 2017. Disponible en: http://arxiv.org/abs/1708.08296
Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019; 6(2): 94-98.
Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albarqouni S et al. The future of digital health with federated learning. NPJ Digit Med. 2020; 3: 119.
Kersey JH. Fifty years of studies of the biology and therapy of childhood leukemia. Blood. 1997; 90(11): 4243-4251.
Khosla A, Cao Y, Lin CC-Y, Chiu H-K, Hu J, Lee H. An integrated machine learning approach to stroke prediction. En: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NY, USA: ACM; 2010.
Jiao W, Atwal G, Polak P, Karlic R, Cibulskis K, Sivachenko A, et al. A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nat Commun. 2020; 11(1): 728.
Mesko B. The role of artificial intelligence in precision medicine. Expert Rev Precis Med Drug Dev. 2017; 2(5): 239-241.