2025, Number 2
Next >>
Med Crit 2025; 39 (2)
Artificial intelligence in mexican critical care medicine: a glimpse at the immediate future
Guerrero GMA
Language: Spanish
References: 17
Page: 94-95
PDF size: 392.97 Kb.
REFERENCES
Nilsson NJ. The quest for artificial intelligence: a history of ideas and achievements. Cambridge University Press; 2010.
Crevier D. AI: the tumultuous history of the search for artificial intelligence. Basic Books; 1993.
OpenAI. About OpenAI. 2015. Available from: https://openai.com/about
Moor M, Banerjee O, Abad ZSH, Krumholz HM, Leskovec J, Topol EJ, et al. Foundation models for generalist medical artificial intelligence. Nature. 2023;616(7956):259-266.
Giacobbe DR, Vena A, Bassetti M. Role of artificial intelligence in ICU therapeutic decision-making for severe infections. Curr Opin Crit Care. 2025;31(5):547-553. doi: 10.1097/MCC.0000000000001304.
Dam TA, Schade RP, de Steenwinkel JEM, Otten M, Roggeveen LF, Hoogendoorn M, et al. Explainable machine learning for discontinuation of therapeutic antibiotics in intensive care patients. J Crit Care. 2025;91:155247. doi: 10.1016/j.jcrc.2025.155247.
Yoon JH, Pinsky MR, Clermont G. Artificial intelligence in Critical Care Medicine. Crit Care. 2022;26(1):75. doi: 10.1186/s13054-022-03915-3.
Lu Y, Wu H, Qi S, Cheng K. Artificial intelligence in Intensive Care Medicine: toward a ChatGPT/GPT-4 way? Ann Biomed Eng. 2023;51(9):1898-1903. doi: 10.1007/s10439-023-03234-w.
Moor M, Banerjee O, Abad ZSH, Krumholz HM, Leskovec J, Topol EJ, et al. Foundation models for generalist medical artificial intelligence. Nature. 2023;616(7956):259-265. doi: 10.1038/s41586-023-05881-4.
Ang CYS, Nor MBM, Nordin NS, Kyi TZ, Razali A, Chiew YS. Methods for estimating resting energy expenditure in intensive care patients: a comparative study of predictive equations with machine learning and deep learning approaches. Comput Methods Programs Biomed. 2025;262:108657. doi: 10.1016/j.cmpb.2025.108657.
Abdulnour RE, Gin B, Boscardin CK. Educational strategies for clinical supervision of artificial intelligence use. N Engl J Med. 2025;393(8):786-797. doi: 10.1056/NEJMra2503232.
Dave T, Athaluri SA, Singh S. ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front Artif Intell. 2023;6:1169595. doi: 10.3389/frai.2023.1169595.
Zarra F, Rolando M, Páramo-Cardona R, Videtta W. Artificial intelligence in intensive care unit: current ethical dilemmas. Med Leg J. 2025:258172251332485. doi: 10.1177/00258172251332485.
Cecconi M, Greco M, Shickel B, Angus DC, Bailey H, Bignami E, et al. Implementing artificial intelligence in Critical Care Medicine: a consensus of 22. Crit Care. 2025;29(1):290. doi: 10.1186/s13054-025-05532-2.
González-Castro A. Artificial intelligence in intensive care medicine, the gradual revolution. Med Intensiva (Engl Ed). 2025;49(9):502164. doi: 10.1016/j.medine.2025.502164.
Komorowski M, Cecconi M. Deploying AI in the ICU: learning from successes and failures. Intensive Care Med. 2025. doi: 10.1007/s00134-025-08131-5.
Berkhout WEM, van Wijngaarden JJ, Workum JD, van de Sande D, Hilling DE, Jung C, et al. Operationalization of artificial intelligence applications in the Intensive Care Unit: a systematic review. JAMA Netw Open. 2025;8(7):e2522866. doi: 10.1001/jamanetworkopen.2025.22866.