medigraphic.com
SPANISH

Salud Jalisco

ISSN 2448-8747 (Print)
Publicación cuatrimestral editada por la Secretaría de Salud Jalisco
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 1

<< Back Next >>

Sal Jal 2025; 12 (1)

Identification by Raman spectroscopy of cellulose in biofilms formed by Mycobacterium bovis Bacillus Calmette-Guerin

Gómez-Haro J, Vallejo-Cardona AA, Flores-Valdez MA
Full text How to cite this article 10.35366/121773

DOI

DOI: 10.35366/121773
URL: https://dx.doi.org/10.35366/121773

Language: Spanish
References: 15
Page: 19-24
PDF size: 456.36 Kb.


Key words:

cellulose, biofilm, mycobacteria, spectroscopy Raman, Mycobacterium bovis BCG.

ABSTRACT

Introduction: biofilms are complex communities of microorganisms that adhere to each other and form an extracellular matrix that provides protection against antibiotics and the host's immune system, contributing to the chronicity and treatment resistance of diseases, such as tuberculosis. Similar structures to in vitro biofilms have been found in the lungs of animal models infected with Mycobacterium tuberculosis, which could increase the difficulty of treatment and the risk of relapse. This study explores the production of cellulose by Mycobacterium bovis BCG, including a recombinant strain that overexpresses the cellulase encoding gene celA1, and analyze them by Raman spectroscopy. The importance of understanding the interaction between cellulose and mycobacteria in developing therapeutic strategies and biotechnological applications is highlighted. Objective: to identify the presence of cellulose using Raman spectroscopy. Material and methods: cultures of Mycobacterium bovis BCG Pasteur ATCC 35734 strain, as well as a recombinant strain that overexpresses the cellulase-encoding gene celA1, were carried out in Sauton medium without detergent, to promote autoaggregation and biofilm formation; material was extracted using a bacterial cellulose protocol and Raman spectra were compared to those of commercial cellulose. Results: although differences are observed in the resolution and location of some peaks, those characteristic of cellulose confirm its presence in the strains under study. Conclusion: through Raman spectra analysis, we found that Mycobacterium bovis BCG produces cellulose in cultures in Sauton medium without detergent, since its spectra show similarities to those of commercial microcrystalline cellulose.


REFERENCES

  1. Esteban J, García-Coca M. Mycobacterium biofilms. Front Microbiol. 2018;8:2651. doi: 10.3389/fmicb.2017.02651.

  2. Ortega-Peña S, Hernández-Zamora E. Biopelículas microbianas y su impacto en áreas médicas: fisiopatología, diagnóstico y tratamiento. Bol Med Hosp Infant Mex. 2018;75(2):79-88. doi: 10.24875/BMHIM.M18000012.

  3. Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol. 2008;69(1):164-174. doi: 10.1111/j.1365-2958.2008.06274.x.

  4. Avcioglu NH. Bacterial cellulose: recent progress in production and industrial applications. World J Microbiol Biotechnol. 2022;38(5):86. doi: 10.1007/s11274-022-03271-y.

  5. Trivedi A, Mavi PS, Bhatt D, Kumar A. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat Commun. 2016;7:11392. doi: 10.1038/ncomms11392.

  6. Agarwal UP. Analysis of cellulose and lignocellulose materials by Raman spectroscopy: a review of the current status. Molecules. 2019;24(9):1659. doi: 10.3390/molecules24091659.

  7. Vaca-González A, Flores-Valdez MA, Aceves-Sánchez MJ, Camacho-Villegas TA, Pérez-Padilla NA, Burciaga-Flores M, et al. Overexpression of the celA1 gene in BCG modifies surface pellicle, glucosamine content in biofilms, and affects in vivo replication. Tuberculosis (Edinb). 2020;125:102005. doi: 10.1016/j.tube.2020.102005.

  8. Larsen MH, Biermann K, Jacobs WR Jr. Laboratory maintenance of Mycobacterium tuberculosis. Curr Protoc Microbiol. 2007;Chapter 10:Unit 10A.1. doi: 10.1002/9780471729259.mc10a01s6.

  9. Chopra L. Extraction of cellulosic fibers from the natural resources: A short review. Mater Today Proc. 2022;48:1265-1270. doi: 10.1016/j.matpr.2021.08.267.

  10. Atalla RH, Wiley JH. Raman spectra of celluloses. IPC Technical Paper Series No. 226. Appleton (WI): The Institute of Paper Chemistry; 1987.

  11. Szyma?ska-Chargot M, Cybulska J, Zdunek A. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors (Basel). 2011;11(6):5543-5560. doi: 10.3390/s110605543.

  12. Wiley JH. Raman spectra of celluloses [Thesis]. Appleton (WI): The Institute of Paper Chemistry; 1986.

  13. Schenzel K, Fischer S. Application of FT Raman spectroscopy for the characterization of cellulose. Lenzinger Berichte. 2004;83:64-70.

  14. Schenzel K, Fischer S. NIR FT Raman spectroscopy-a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose. 2001;8(1):49-57.

  15. Davies LM, Harris PJ. Atomic force microscopy of microfibrils in primary cell walls. Planta. 2003;217(2):283-289.




Figure 1
Table 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Sal Jal. 2025;12