2025, Number 3
<< Back Next >>
Rev Educ Bioquimica 2025; 44 (3)
Una visión general de las interacciones entre las biopelículas bacterianas y las plantas
Chávez-Jacobo VM
Language: Spanish
References: 12
Page: 169-175
PDF size: 434.86 Kb.
ABSTRACT
Bacteria can form a three-dimensional structure known as a biofilm, which
can be formed on virtually any surface, including plants. Although plantmicroorganism
interactions are often associated with pathogenesis, biofilms
have been studied not only as a survival mechanism for bacteria but also as a
means of establishing symbiotic relationships between bacteria and plants.
This article analyzes the formation of biofilms and the beneficial aspects of
this association for plants, such as improved nutrient availability and
protection against pathogens. Additionally, the article explores how agricultural
practices are taking advantage of this interaction.
REFERENCES
Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y,Jin X, Qiu J, Guan X, Huang T. Beyond risk:bacterial biofilms and their regulating approaches.Front Microbiol 2020; 11: 928. DOI:10.3389/fmicb.2020.00928.
Vani S, Vadakkan K, Mani B. A narrative reviewon bacterial biofilm: its formation, clinical aspectsand inhibition strategies. Futur J Pharm Sci 2023; 9,50.DOI: 10.1186/s43094-023-00499-9.
Ueda A, Ogasawara S, Horiuchi K.Identification of the genes controlling biofilmformation in the plant commensal Pseudomonas protegens Pf-5. Arch Microbiol 2020; 202(9): 2453-2459. DOI: 10.1007/s00203-020-01966-0.
Ma LZ, Wang D, Liu Y, Zhang Z, Wozniak DJ.Regulation of biofilm exopolysaccharidebiosynthesis and degradation in Pseudomonasaeruginosa. Annu Rev Microbiol 2022; 76:413-433.DOI: 10.1146/annurev-micro-041320-111355.
Rather MA, Gupta K, Mandal M. Microbialbiofilm: formation, architecture, antibioticresistance, and control strategies. Braz J Microbiol2021; (4): 1701-1718. DOI: 10.1007/s42770-021-00624-x.
Sun W, Shahrajabian MH, Wang N. A Study ofthe different strains of the genus Azospirillum spp.on increasing productivity and stress resilience inplants. Plants 2025; 14(2):267. DOI:10.3390/plants14020267.
Saeed Q, Xiukang W, Haider FU, Kučerik J,Mumtaz MZ, Holatko J, Naseem M, Kintl A, EjazM, Naveed M, Brtnicky M, Mustafa A. Rhizosphere bacteria in plant growth promotion, biocontrol, andbioremediation of contaminated sites: acomprehensive review of effects and mechanisms.Int J Mol Sci 2021; 22(19), 10529. DOI:10.3390/ijms221910529.
Narváez-Barragán DA, Tovar-Herrera OE,Guevara-García A, Serrano M, Martinez-Anaya C.Mechanisms of plant cell wall surveillance inresponse to pathogens, cell wall-derived ligands andthe effect of expansins to infection resistance orsusceptibility. Front Plant Sci 2022; 13:969343.DOI: 10.3389/fpls.2022.969343.
Rabbee MF, Ali MS, Choi J, Hwang BS, JeongSC, Baek KH. Bacillus velezensis: A valuablemember of bioactive molecules within plantmicrobiomes. Molecules 2019; 24(6):1046. DOI:10.3390/molecules24061046.
Ajijah N, Fiodor A, Pandey AK, Rana A,Pranaw K. Plant growth-promoting bacteria (PGPB)with biofilm-forming ability: a multifaceted agentfor sustainable agriculture. Diversity 2023; 15, 112.DOI: 10.3390/d15010112.
Backer R, Rokem JS, Ilangumaran G, LamontJ, Praslickova D, Ricci E, Subramanian S, SmithDL.Plant growth-promoting rhizobacteria: context,mechanisms of action, and roadmap tocommercialization of biostimulants for sustainableagriculture. Front Plant Sci 2018; 9:1473. DOI:10.3389/fpls.2018.01473.
Syed RN, Lodhi AM, Shahzad S. Managementof Pythium diseases. In Pythium 2020; (pp. 314-343). CRC Press. DOI: 10.1201/9780429296406-22.