medigraphic.com
SPANISH

Revista ADM Órgano Oficial de la Asociación Dental Mexicana

ISSN 0001-0944 (Print)
Órgano Oficial de la Asociación Dental Mexicana
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 6

<< Back Next >>

Rev ADM 2025; 82 (6)

The application of artificial intelligence in diagnosing periodontal disease: advances and perspectives.

García-Vega MF, García-Arévalo F, Flores PJC, González-Rascón A
Full text How to cite this article 10.35366/122110

DOI

DOI: 10.35366/122110
URL: https://dx.doi.org/10.35366/122110

Language: Spanish
References: 20
Page: 335-341
PDF size: 943.88 Kb.


Key words:

periodontitis, artificial intelligence, convolutional neural networks, deep learning.

ABSTRACT

Periodontitis is a disease that affects the global population and is characterized as a chronic inflammatory condition that compromises the patient's overall health. It is associated with both local and systemic factors. Artificial intelligence (AI) has proven to be a powerful tool for detecting periodontal disease through deep learning models such as convolutional neural networks (CNNs). This review examines the use of AI in dental imaging analysis, particularly through architectures like U-Net, ResNet, and hybrid models such as HYNETS, which allow for the segmentation of anatomical structures in radiographs and Cone Beam Computed Tomography (CBCT) to accurately classify bone loss and the stages of periodontitis. Among the main benefits are high diagnostic accuracy and significant advancements in the classification of periodontitis stages, supporting clinicians in optimizing clinical decisions, standardizing diagnosis, and reducing interprofessional variability. This literature review aims to analyze the application of deep learning and CNNs in the diagnosis and treatment of periodontal disease, highlighting their potential to enhance diagnostic precision, reduce clinical errors, and improve patient care through the integration of advanced technological tools.


REFERENCES

  1. Organización Mundial de la Salud. Oral health [Internet]. Ginebra: World Health Organization; 2025 [Citado 2025 Oct 17]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/oral-health

  2. Gutiérrez-Romero F, Padilla-Avalos A, Marroquín-Soto C. Enfermedad periodontal en Latinoamérica: enfoque regional y estrategia sanitaria. Rev Salud Pública (Bogotá). 2023; 24 (4): 1-5. Disponible en: https://doi.org/10.15446/rsap.v24n4.97675

  3. Navarro SAB, Faria AR, Bascones MA. Relación entre diabetes mellitus y enfermedad periodontal. Periodoncia. 2002; 14 (1): 9-19. Disponible en: https://scielo.isciii.es/pdf/peri/v14n1/original1.pdf

  4. American Academy of Periodontology. Gum disease information [Internet]. Chicago: AAP [Cited 2025 October 17]. Available in: https://www.perio.org/for-patients/gum-disease-information/

  5. Ávila-Tomás JF, Mayer-Pujadas MA, Quesada-Varela V. La inteligencia artificial al servicio de la medicina familiar y comunitaria. Aten Primaria Práct. 2022; 4 (3): 1.

  6. Cedeño SLV, Lainez ASM, Escudero DWS, Flor CMC. Aplicación de inteligencia artificial en odontología. RECIAMUC Rev Cient Multidiscip. 2023; 7 (4): 37-46. Disponible en: https://doi.org/10.26820/reciamuc/7.(4).oct.2023.37-46

  7. Gallardo HC. IA en odontología: diagnóstico preciso de las enfermedades de las encías en minutos. ResearchGate; 2024 [citado 2025 Oct 17]. CC BY 4.0 Disponible en: https://www.researchgate.net/publication/378520327_IA_en_odontologia_Diagnostico_preciso_de_las_enfermedades_de_las_encias_en_minutos

  8. Faiyazuddin M, Rahman SJQ, Anand G, Siddiqui RK, Mehta R, Khatib MN et al. The impact of artificial intelligence on healthcare: a comprehensive review of advancements in diagnostics, treatment, and operational efficiency. Health Sci Rep. 2025; 8(1): 70312. doi: 10.1002/hsr2.70312.

  9. Aracena C, Villena F, Arias F, Dunstan J. Aplicaciones del aprendizaje automático en la medicina. Rev Med Clin Condes. 2022; 33: 568-575. Disponible en: https://doi.org/10.1016/j.rmclc.2022.10.001

  10. Mienye ID, Swart TG, Obaido G, Jordan M, Ilono P. Deep convolutional neural networks in medical image analysis: a review. Information. 2025; 16 (3): 195. https://doi.org/10.3390/info16030195

  11. Neha F, Deepshikha Bhati, Deepak Kumar Shukla, Sonavi Makarand Dalvi, Nikolaos Mantzou, Safa Shubbar. An analytics-driven review of U-Net for medical image segmentation. Healthc Anal. 2025; 8: 100416. Available in: https://doi.org/10.1016/j.health.2025.100416

  12. Agrawal H, Hietanen A, Särkkä S. Utilizing U-Net architectures with auxiliary information for scatter correction in CBCT across different field-of-view settings [Internet]. Proc. SPIE. 2024; 12925: 1-5. Available in: https://doi.org/10.1117/12.3004168

  13. Kabir T, Lee C-T, Nelson J, Sheng S, Meng H-W, Chen L et al. An end-to-end entangled segmentation and classification convolutional neural network for periodontitis stage grading from periapical radiographic images. ArXiv. 2021; arXiv: 2109.13120: 1-8. Available in: https://doi.org/10.48550/arXiv.2109.13120

  14. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017; 284 (2): 574-582. Available in: https://doi.org/10.1148/radiol.2017162326

  15. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316 (22): 2402-2410. Available in: https://doi.org/10.1001/jama.2016.17216

  16. Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: a scoping review. J Dent. 2019; 91: 103226. Available in: https://doi.org/10.1016/j.jdent.2019.103226

  17. Chang J, Chang MF, Angelov N, Viana A, Politis C, Lambrichts I et al. Application of deep machine learning for the radiographic diagnosis of periodontitis. Clin Oral Investig. 2022; 26 (11): 6629-6637. Available in: https://doi.org/10.1007/s00784-022-04617-4

  18. Contreras VJA, Gutierrez AEF, Solano DYT, Castellanos DYZ, Buitrago RSM. Reproducibilidad en el diagnóstico imagenológico de periodontitis apical a partir de CBCT. Acta Odontol Colomb. 2020; 10 (1): 60-67. Available in: https://doi.org/10.15446/aoc.v10n1.81133

  19. Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA et al. Developments, application, and performance of artificial intelligence in dentistry–A systematic review. J Dent Sci. 2021; 16 (1): 508-522. Available in: https://doi.org/10.1016/j.jds.2020.06.019

  20. Pitchika V, Büttner M, Schwendicke F. Artificial intelligence and personalized diagnostics in periodontology: a narrative review. Periodontol 2000. 2024; 95: 220-231. Available in: https://doi.org/10.1111/prd.12586




Figure 1
Figure 2

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev ADM. 2025;82