medigraphic.com
SPANISH

Revista ADM Órgano Oficial de la Asociación Dental Mexicana

ISSN 0001-0944 (Print)
Órgano Oficial de la Asociación Dental Mexicana
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 6

<< Back Next >>

Rev ADM 2025; 82 (6)

Applications of functionalized chitosan in bone regeneration for dentistry: a critical review of its modification with drugs and nanoparticles.

Araujo GJM, Nakagochi CSE, Cruz PG
Full text How to cite this article 10.35366/122111

DOI

DOI: 10.35366/122111
URL: https://dx.doi.org/10.35366/122111

Language: Spanish
References: 126
Page: 342-354
PDF size: 457.89 Kb.


Key words:

chitosan, bone regeneration, tissue engineering, osteoinduction, bioactive agents.

ABSTRACT

Introduction: bone regeneration remains a major challenge in dentistry, particularly in managing periodontal and alveolar defects. Chitosan-based hydrogels have emerged as promising biomaterials due to their biocompatibility, biodegradability, and capacity for functionalization with drugs or nanoparticles to enhance osteoinductive properties. This review critically examines recent evidence on modified chitosan hydrogels and their clinical potential. Material and methods: a narrative review of 129 scientific articles from the last ten years was conducted, focusing on studies involving chitosan hydrogel modification with drugs, nanoparticles, or osteoinductive biomolecules. Both in vitro and in vivo research related to dental applications in bone tissue engineering were analyzed. Results: modified chitosan hydrogels improved cell proliferation, osteoblastic differentiation, mineralization, and expression of osteogenic markers. Studies reported enhanced mechanical performance, biocompatibility, and controlled release of bioactive agents. Several animal models demonstrated effective bone regeneration, particularly in periodontal defects. Conclusion: modified chitosan hydrogels show great promise for dental bone regeneration. However, clinical validation is still needed. Future research should focus on smart biomaterials integrated with stem cells and bioactive molecules to advance their translation into routine dental practice.


REFERENCES

  1. Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Chitosan-based scaffold for mineralized tissues regeneration. Mar Drugs. 2021; 19 (10): 551.

  2. Valamvanos TF, Dereka X, Katifelis H, Gazouli M, Lagopati N. Recent advances in scaffolds for guided bone regeneration. Biomimetics (Basel). 2024; 9 (1): 153.

  3. Ra G, Wo Q. Bone regeneration in dentistry: an overview. J Biol Regul Homeost Agents 2021; 35 (1 Suppl. 1): 37-46.

  4. Zhu T, Zhou H, Chen X, Zhu Y. Recent advances of responsive scaffolds in bone tissue engineering. Front Bioeng Biotechnol 2023; 11: 1296881.

  5. Buser D, Urban I, Monje A, Kunrath MF, Dahlin C. Guided bone regeneration in implant dentistry: basic principle, progress over 35 years, and recent research activities. Periodontol 2000. 2023; 93 (1): 9-25.

  6. Aguilar A, Zein N, Harmouch E, Hafdi B, Bornert F, Offner D et al. Application of chitosan in bone and dental engineering. Molecules. 2019; 24 (16): 3009.

  7. Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater. 2020; 5 (1): 164-183.

  8. Souto-Lopes M, Grenho L, Manrique Y, Dias MM, Lopes JCB, Fernandes MH et al. Bone regeneration driven by a nano-hydroxyapatite/chitosan composite bioaerogel for periodontal regeneration. Front Bioeng Biotechnol. 2024; 12: 1355950.

  9. Olguín Y, Gerova-Vatsova T, Peev S, Yotsova R, Rogova V-V. Evaluation of the effectiveness of chitosan-modified bone regeneration materials: a systematic review. Pharmaceutics. 2025; 17 (5): 665.

  10. Piszko PJ, Piszko A, Kiryk S, Kiryk J, Horodniczy T, Struzik N et al. Bone regeneration capabilities of scaffolds containing chitosan and nanometric hydroxyapatite—Systematic review based on in vivo examinations. Biomimetics (Basel). 2024; 9 (8): 503.

  11. Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci. 2016; 10 (1): 27-37.

  12. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010; 144 (1): 51-63.

  13. Rezazadeh M, Parandeh M, Akbari V, Ebrahimi Z, Taheri A. Incorporation of rosuvastatin-loaded chitosan/chondroitin sulfate nanoparticles into a thermosensitive hydrogel for bone tissue engineering: preparation, characterization, and cellular behavior. Pharm Dev Technol. 2019; 24 (3): 357-367.

  14. Zhang C, Fei Y, Li M, Li J, Tang M, Wang G et al. Chitosan-P407-PNIPAM hydrogel loaded with AgNPs/lipid complex for antibacterial, inflammation regulation and alveolar bone regeneration in periodontitis treatment. Int J Biol Macromol. 2025; 307 (Pt 4): 142080. doi: 10.1016/j.ijbiomac.2025.142080.

  15. Hallmann L, Gerngrob MD. Chitosan and its application in dental implantology. J Stomatol Oral Maxillofac Surg. 2022; 123 (6): e701-e707.

  16. Seidi F, Khodadadi Yazdi M, Jouyandeh M, Dominic M, Naeim H, Nezhad MN et al. Chitosan-based blends for biomedical applications. Int J Biol Macromol. 2021; 183: 1818-1850.

  17. Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol. 2020; 162: 956-974.

  18. Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S et al. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol. 2022; 222 (Pt A): 132-153.

  19. Kulkarni N, Shinde SD, Jadhav GS, Adsare DR, Rao K, Kachhia M et al. Peptide-chitosan engineered scaffolds for biomedical applications. Bioconjug Chem, 2021; 32 (3): 448-465.

  20. Beleño-Acosta B, Advincula RC, Grande-Tovar CD. Chitosan-based scaffolds for the treatment of myocardial infarction: a systematic review. Molecules. 2023; 28 (4): 1920. doi: 10.3390/MOLECULES28041920.

  21. Atia GAN, Shalaby HK, Zehravi M, Ghobashy MM, Attia HAN, Ahmad Z et al. Drug-loaded chitosan scaffolds for periodontal tissue regeneration. Polymers (Basel). 2022; 14 (15): 3192. doi: 10.3390/POLYM14153192.

  22. Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A et al. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym. 2024; 323: 121394. doi: 10.1016/j.carbpol.2023.121394.

  23. Tian B, Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: a review. Int J Biol Macromol 2023; 235: 123902. doi: 10.1016/j.ijbiomac.2023.123902.

  24. Pan S, Zhu C, Wu Y, Tao L. Chitosan-based self-healing hydrogel: from fabrication to biomedical application. Polymers (Basel) 2023; 15 (18): 3768. doi: 10.3390/POLYM15183768.

  25. Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S et al. Chitosan-based hydrogel in the management of dermal infections: a review. Gels. 2023; 9 (7): 594. doi: 10.3390/GELS9070594.

  26. Wang Q, Wang X, Feng Y. Chitosan hydrogel as tissue engineering scaffolds for vascular regeneration applications. Gels. 2023; 9 (5): 373. doi: 10.3390/GELS9050373.

  27. Yuan N, Shao K, Huang S, Chen C. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: a review. Int J Biol Macromol. 2023; 240: 124321. doi: 10.1016/j.ijbiomac.2023.124321.

  28. Zhao J, Qiu P, Wang Y, Wang Y, Zhou J, Zhang B et al. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol. 2023; 244: 125250. doi: 10.1016/j.ijbiomac.2023.125250.

  29. Ferreira Muniz I de A, e Silva Campos D, Ribeiro ILA, Rodrigues WF, da Silva SD, Batista AUD et al. Antimicrobial Activity in Chitosan-Treated Prosthetic Materials: A Systematic Review. Eur J Prosthodont Restor Dent. 2023; 31 (3): 214-223.

  30. Confederat LG, Tuchilus CG, Dragan M, Sha'at M, Dragostin OM. Preparation and antimicrobial activity of chitosan and its derivatives: a concise review. Molecules. 2021; 26 (12): 3694. doi: 10.3390/MOLECULES26123694.

  31. Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. 2021; 251: 117108. doi: 10.1016/j.carbpol.2020.117108.

  32. Zhao Y, Zhao S, Ma Z, Ding C, Chen J, Li J. Chitosan-based scaffolds for facilitated endogenous bone re-generation. Pharmaceuticals (Basel). 2022; 15 (8): 1023. doi: 10.3390/PH15081023.

  33. Kim SK, Murugan SS, Dalavi PA, Gupta S, Anil S, Seong GH et al. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. Beilstein J Nanotechnol. 2022; 13: 1051-1067.

  34. Paradowska-Stolarz A, Mikulewicz M, Laskowska J, Karolewicz B, Owczarek A. The importance of chitosan coatings in dentistry. Mar Drugs. 2023; 21 (12): 613. doi: 10.3390/MD21120613.

  35. Thangavelu A, Stelin K, Vannala V, Mahabob N, Hayyan F, Sundaram R. An overview of chitosan and its role in periodontics. J Pharm Bioallied Sci. 2021; 13 (Suppl 1): S15-S18.

  36. Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: where we stand. Carbohydr Polym. 2024; 343: 122233. doi: 10.1016/j.carbpol.2024.122233.

  37. Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent applications of chitosan and its derivatives in antibacterial, anticancer, wound healing, and tissue engineering fields. Polymers (Basel). 2024; 16 (10): 1351. doi: 10.3390/POLYM16101351.

  38. Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan-based nanoparticles in skin wound healing. Asian J Pharm Sci. 2022; 17 (3): 299-332.

  39. Alsaeed MA, Al-Ghaban NMH. Chitosan nanoparticle/simvastatin for experimental maxillary bony defect healing: a histological and histomorphometrical study. Biomimetics. 2023; 8 (4): 363. doi: 10.3390/BIOMIMETICS8040363.

  40. Murali VP, Guerra FD, Ghadri N, Christian JM, Stein SH, Jennings JA et al. Simvastatin loaded chitosan guided bone regeneration membranes stimulate bone healing. J Periodontal Res. 2021; 56 (5): 877-884.

  41. Petit C, Batool F, Stutz C, Anton N, Klymchenko A, Vandamme T et al. Development of a thermosensitive statin loaded chitosan-based hydrogel promoting bone healing. Int J Pharm. 2020; 586: 119534. doi: 10.1016/J.IJPHARM.2020.119534.

  42. Rodríguez-Merchán EC. Bone healing materials in the treatment of recalcitrant nonunions and bone defects. Int J Mol Sci. 2022; 23 (6): 3352. doi: 10.3390/IJMS23063352.

  43. Xu S, Zhao S, Jian Y, Shao X, Han D, Zhang F et al. Icariin-loaded hydrogel with concurrent chondrogenesis and anti-inflammatory properties for promoting cartilage regeneration in a large animal model. Front Cell Dev Biol. 2022; 10: 1011260. doi: 10.3389/FCELL.2022.1011260.

  44. Shao B, Fu Y, Li B, Huo S, Du J, Zhang X et al. Icariin-loaded chitosan/β-glycerophosphate thermosensitive hydrogel enhanced infection control and bone regeneration in canine with infectious bone defects. J Biomater Appl. 2024; 39 (7): 696-713. doi: 10.1177/08853282241288323.

  45. Tang X, Wang Y, Liu N, Deng X, Zhou Z, Yu C et al. Methacrylated carboxymethyl chitosan scaffold containing icariin-loaded short fibers for antibacterial, hemostasis, and bone regeneration. ACS Biomater Sci Eng. 2024; 10 (8): 5181-5193.

  46. Li H, Bao Y, He J, Yu H, Tian C, Zhou X et al. Chitosan-based dihydromyricetin composite hydrogel demonstrating sustained release and exceptional antibacterial activity. Int J Biol Macromol. 2025; 291: 139128. doi: 10.1016/j.ijbiomac.2024.139128.

  47. Liu X, Wang S, Ding C, Zhao Y, Zhang S, Sun S et al. Polyvinylpyrrolidone/chitosan-loaded dihydromyricetin-based nanofiber membrane promotes diabetic wound healing by anti-inflammatory and regulating autophagy-associated protein expression. Int J Biol Macromol. 2024; 259 (Pt 1): 129160. doi: 10.1016/j.ijbiomac.2023.129160.

  48. Ding Q, Liu X, Zhang S, Chai G, Ma S, Sun S et al. Chitosan-modified dihydromyricetin liposomes promote the repair of liver injury in mice suffering from diabetes mellitus. Int J Biol Macromol. 2024; 273 (Pt 2): 133040. doi: 10.1016/j.ijbiomac.2024.133040.

  49. Yang J, Zhang L, Wang Y, Wang N, Wei H, Zhang S et al. Dihydromyricetin-loaded oxidized polysaccharide/L-arginine chitosan adhesive hydrogel promotes bone regeneration by regulating PI3K/AKT signaling pathway and MAPK signaling pathway. Carbohydr Polym. 2024; 346: 122614. doi: 10.1016/j.carbpol.2024.122614.

  50. Chen NX, Su XL, Feng Y, Liu Q, Tan L, Yuan H et al. Chitosan nanoparticles for sustained release of metformin and its derived synthetic biopolymer for bone regeneration. Front Bioeng Biotechnol. 2023; 11: 1169496. doi: 10.3389/FBIOE.2023.1169496.

  51. Gupta AA, Kheur S, Badhe RV, Raj AT, Bhonde R, Jaisinghani A et al. Assessing the potential use of chitosan scaffolds for the sustained localized delivery of vitamin D. Saudi J Biol Sci. 2021; 28 (4): 2210-2215.

  52. Soriente A, Fasolino I, Gomez-Sánchez A, Prokhorov E, Buonocore GG, Luna-Barcenas G et al. Chitosan/hydroxyapatite nanocomposite scaffolds to modulate osteogenic and inflammatory response. J Biomed Mater Res A. 2022; 110 (2): 266-272.

  53. Lazarevic M, Petrovic S, Pierfelice TV, Ignjatovic N, Piattelli A, Vlajic Tovilovic T et al. Antimicrobial and osteogenic effects of collagen membrane decorated with chitosan–nano-hydroxyapatite. Biomolecules. 2023; 13 (4): 579. doi: 10.3390/BIOM13040579.

  54. Gawel J, Milan J, Zebrowski J, Ploch D, Stefaniuk I, Kus-Liskiewicz M. Biomaterial composed of chitosan, riboflavin, and hydroxyapatite for bone tissue regeneration. Sci Rep. 2023; 13 (1): 17004. doi: 10.1038/S41598-023-44225-0.

  55. Ait Said H, Mabroum H, Lahcini M, Oudadesse H, Barroug A, Ben Youcef H et al. Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: a review. Int J Biol Macromol. 2023; 243: 125150. doi: 10.1016/j.ijbiomac.2023.125150.

  56. Pádua AS, Figueiredo L, Silva JC, Borges JP. Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Prog Biomater. 2023; 12 (2): 137-153.

  57. Mutlu N, Liverani L, Kurtuldu F, Galusek D, Boccaccini AR. Zinc improves antibacterial, anti-inflammatory and cell motility activity of chitosan for wound healing applications. Int J Biol Macromol. 2022; 213: 845-857.

  58. Harini B, Rajeshkumar S, Roy A. Biomedical application of chitosan and piper longum-assisted nano zinc oxide–based dental varnish. Appl Biochem Biotechnol. 2022; 194 (3): 1303-1309.

  59. Gamboa-Solana CDC, Chuc-Gamboa MG, Aguilar-Pérez FJ, Cauich-Rodríguez JV, Vargas-Coronado RF, Aguilar-Pérez DA et al. Zinc oxide and copper chitosan composite films with antimicrobial activity. Polymers (Basel) 2021; 13 (22): 3861. doi: 10.3390/POLYM13223861.

  60. Loncarevic A, Malbasa Z, Kovacic M, Ostojic K, Angaits A, Skoko Z et al. Copper-zinc/chitosan complex hydrogels: rheological, degradation and biological properties. Int J Biol Macromol. 2023; 251: 126373. doi: 10.1016/j.ijbiomac.2023.126373.

  61. Bryan A, Wales E, Vedante S, Blanquer A, Neupane D, Mishra S et al. Evaluation of magnesium-phosphate particle incorporation into co-electrospun chitosan-elastin membranes for skin wound healing. Mar Drugs. 2022; 20 (10): 615. doi: 10.3390/MD20100615.

  62. Chen Y, Sheng W, Lin J, Fang C, Deng J, Zhang P et al. Magnesium oxide nanoparticle coordinated phosphate-functionalized chitosan injectable hydrogel for osteogenesis and angiogenesis in bone regeneration. ACS Appl Mater Interfaces. 2022; 14 (6): 7592-7608.

  63. Zajac A, Sasiadek W, Dyminska L, Ropuszynska-Robak P, Hanuza J, Ptak M et al. Chitosan and its carboxymethyl-based membranes produced by crosslinking with magnesium phytate. Molecules. 2023; 28 (16): 5987. doi: 10.3390/MOLECULES28165987.

  64. Aldakheel FM, Mohsen D, El Sayed MM, Alawam KA, Binshaya AKS, Alduraywish SA. Silver nanoparticles loaded on chitosan-g-PVA hydrogel for the wound-healing applications. Molecules. 2023; 28 (7): 3241. doi: 10.3390/MOLECULES28073241.

  65. Artunduaga-Bonilla JJ, Honorato L, Cordeiro-De Oliveira DF, Araújo-Goncalves R, Guimaraes A, Miranda K et al. Silver chitosan nanocomposites as a potential treatment for superficial candidiasis. Med Mycol. 2021; 59 (10): 993-1005.

  66. Luo Q, Yang Y, Ho C, Li Z, Chiu W, Li A et al. Dynamic hidrogel-metal-organic framework system promotes bone regeneration in periodontitis through controlled drug delivery. J Nanobiotechnology. 2024; 22 (1): 287. doi: 10.1186/S12951-024-02555-9.

  67. Li L, Han S, Zhao S, Li X, Liu B, Liu Y. Chitosan modified metal-organic frameworks as a promising carrier for oral drug delivery. RSC Adv 2020; 10 (73): 45130-45138.

  68. Dousti M, Golmohamadpour A, Hami Z, Jamalpoor Z. Ca-AlN MOFs-loaded chitosan/gelatin scaffolds; a dual-delivery system for bone tissue engineering applications. Nanotechnology. 2024; 35 (14). doi: 10.1088/1361-6528/AD0EF4.

  69. Liu S, Li Z, Wang Q, Han J, Wang W, Li S et al. Graphene oxide/chitosan/hydroxyapatite composite membranes enhance osteoblast adhesion and guided bone regeneration. ACS Appl Bio Mater 2021; 4 (11): 8049-8059.

  70. Feng W, Wang Z. Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. Carbohydr Polym. 2022; 294: 119824. doi: 10.1016/j.carbpol.2022.119824.

  71. Hosseini SN, Naghib SM, Kashani GK, Mozafari MR. Chitosan-grafted graphene materials for drug delivery in wound healing. Curr Pharm Des. 2025; 31 (9): 691-715.

  72. Zapata MEV, Tovar CDG, Hernandez JHM. The role of chitosan and graphene oxide in bioactive and antibacterial properties of acrylic bone cements. Biomolecules. 2020; 10 (12): 1-23.

  73. Souza APC, Neves JG, Navarro da Rocha D, Lopes CC, Moraes AM, Correr-Sobrinho L et al. Chitosan/xanthan membrane containing hydroxyapatite/graphene oxide nanocomposite for guided bone regeneration. J Mech Behav Biomed Mater. 2022; 136: 105464. doi: 10.1016/j.jmbbm.2022.105464.

  74. Kodolova-Chukhontseva VV, Shishov MA, Kolbe KA, Smirnova NV, Dobrovol'skaya IP, Dresvyanina EN et al. Conducting composite material based on chitosan and single-wall carbon nanotubes for cellular technologies. Polymers (Basel). 2022; 14 (16): 3287. doi: 10.3390/POLYM14163287.

  75. Silva SK, Plepis AMG, Martins V da CA, Horn MM, Buchaim DV, Buchaim RL et al. Suitability of chitosan scaffolds with carbon nanotubes for bone defects treated with photobiomodulation. Int J Mol Sci. 2022; 23 (12): 6503. doi: 10.3390/IJMS23126503.

  76. Grzybek P, Jakubski L, Dudek G. Neat chitosan porous materials: a review of preparation, structure characterization and application. Int J Mol Sci. 2022; 23 (17): 9932. doi: 10.3390/IJMS23179932.

  77. Wu P, Shen L, Liu HF, Zou XH, Zhao J, Huang Y et al. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine. Mil Med Res. 2023; 10 (1): 35. doi: 10.1186/S40779-023-00469-5.

  78. Nelson VJ, Dinnunhan MFK, Turner PR, Faed JM, Cabral JD. A chitosan/dextran-based hydrogel as a delivery vehicle of human bone-marrow derived mesenchymal stem cells. Biomedical Materials (Bristol). 2017; 12 (3): 035012. doi: 10.1088/1748-605X/AA70F2.

  79. Duong TTL, Vu BT, Ta HTK, Vo QM, Le TD, Nguyen TH. Fabrication of in situ-cross-linked N-succinyl chitosan/oxidized alginate hydrogel-loaded ascorbic acid and biphasic calcium phosphate for bone tissue engineering. Biopolymers. 2024; 116 (1): e23628. doi: 10.1002/BIP.23628.

  80. Cui ZK, Kim S, Baljon JJ, Wu BM, Aghaloo T, Lee M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun. 2019; 10 (1): 3523. doi: 10.1038/S41467-019-11511-3.

  81. Priddy-Arrington TR, Edwards RE, Colley CE, Nguyen MM, Hamilton-Adaire T, Caldorera-Moore ME. Characterization and optimization of injectable in situ crosslinked chitosan-genipin hydrogels. Macromol Biosci. 2023; 23 (6): e2200505. doi: 10.1002/MABI.202200505.

  82. Guillén-Carvajal K, Valdez-Salas B, Beltrán-Partida E, Salomón-Carlos J, Cheng N. Chitosan, gelatin, and collagen hydrogels for bone regeneration. Polymers (Basel). 2023; 15 (13): 2762. doi: 10.3390/polym15132762.

  83. Hong F, Qiu P, Wang Y, Ren P, Liu J, Zhao J et al. Chitosan-based hydrogels: From preparation to applications, a review. Food Chem X. 2024; 21: 101095.

  84. Fan P, Zeng Y, Zaldivar-Silva D, Agüero L, Wang S. Chitosan-based hemostatic hydrogels: the concept, mechanism, application, and prospects. Molecules. 2023; 28 (3): 1473. doi: 10.3390/molecules28031473.

  85. López-Manzanara Pérez C, Torres-Pabón NS, Laguna A, Torrado G, de la Torre-Iglesias PM, Torrado-Santiago S et al. Development of chitosan/sodium carboxymethylcellulose complexes to improve the simvastatin release rate: polymer/polymer and drug/polymer interactions' effects on kinetic models. Polymers (Basel). 2023; 15 (20): 4184. doi: 10.3390/polym15204184.

  86. Salahuddin A, Ashraf A, Ahmad K, Hou H. Recent advances in chitosan-based smart hydrogel for drug delivery systems. Int J Biol Macromol. 2024: 135803.

  87. Lazaridou M, Bikiaris DN, Lamprou DA. 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery. Pharmaceutics. 2022; 14 (9): 1978. doi: 10.3390/PHARMACEUTICS14091978.

  88. Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release 2020; 326: 150-163.

  89. Saeedi M, Vahidi O, Moghbeli M, Ahmadi S, Asadnia M, Akhavan O et al. Customizing nano-chitosan for sustainable drug delivery. J Control Release. 2022; 350: 175-192.

  90. Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol. 2018; 110: 97-109.

  91. Petroni S, Tagliaro I, Antonini C, D'Arienzo M, Orsini SF, Mano JF et al. Chitosan-based biomaterials: insights into chemistry, properties, devices, and their biomedical applications. Mar Drugs. 2023; 21 (3): 147. doi: 10.3390/md21030147.

  92. Manna S, Seth A, Gupta P, Nandi G, Dutta R, Jana S et al. Chitosan derivatives as carriers for drug delivery and biomedical applications. ACS Biomater Sci Eng. 2023; 9 (5): 2181-2202.

  93. Ailincai D, Morariu S, Rosca I, Sandu AI, Marin L. Drug delivery based on a supramolecular chemistry approach by using chitosan hydrogels. Int J Biol Macromol. 2023; 248: 125800. doi: 10.1016/j.ijbiomac.2023.125800.

  94. Ji X, Shao H, Li X, Ullah MW, Luo G, Xu Z et al. Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials. 2022; 285: 121530. doi: 10.1016/j.biomaterials.2022.121530.

  95. Wang X, Li S, Yu H, Lv J, Fan M, Wang X et al. The biocompatibility of multi-source stem cells and gelatin-carboxymethyl chitosan-sodium alginate hybrid biomaterials. Tissue Eng Regen Med. 2022; 19 (3): 491-503.

  96. Deineka V, Sulaieva O, Pernakov N, Radwan-Praglowska J, Janus L, Korniienko V et al. Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding. Mater Sci Eng C Mater Biol Appl. 2021; 120: 111740. doi: 10.1016/j.msec.2020.111740.

  97. Jiang Z, Li L, Li H, Xia L, Hu H, Wang S et al. Preparation, biocompatibility, and wound healing effects of O-carboxymethyl chitosan nonwoven fabrics in partial-thickness burn model. Carbohydr Polym. 2022; 280: 119032. doi: 10.1016/j.carbpol.2021.119032.

  98. Zhong C, Zhu H, Sheng Y, Wo J, You D, Sun G et al. Biocompatibility and osteogenic potential of choline phosphate chitosan-coated biodegradable Zn1Mg. Acta Biomater. 2024; 175: 395-410.

  99. Costa EM, Silva S, Tavaria FK, Pintado M. Insights into the biocompatibility and biological potential of a chitosan nanoencapsulated textile dye. Int J Mol Sci. 2022; 23 (22): 14234. doi: 10.3390/IJMS232214234.

  100. Gutiérrez-Sánchez M, Flores-Rocha S, Pozos-Guillén A, Flores H, Escobar-Barrios V, Palestino-Escobedo AG et al. Design, characterization, and biocompatibility of chitosan-nano-hydroxyapatite/tricalcium phosphate sponges. Tissue Cell. 2025; 94: 102804. doi: 10.1016/j.tice.2025.102804.

  101. Kim S, Jung S. Biocompatible and self-recoverable succinoglycan dialdehyde-crosslinked alginate hydrogels for pH-controlled drug delivery. Carbohydr Polym. 2020; 250: 116934. doi: 10.1016/j.carbpol.2020.116934.

  102. Kwon TH, Lamster IB, Levin L. Current concepts in the management of periodontitis. Int Dent J 2021; 71 (6): 462-476.

  103. Mohammad-Rahimi H, Motamedian SR, Pirayesh Z, Haiat A, Zahedrozegar S, Mahmoudinia E et al. Deep learning in periodontology and oral implantology: a scoping review. J Periodontal Res. 2022; 57 (5): 942-951.

  104. Kantarci A, Stavropoulos A, Sculean A. Introduction: vision of regenerative periodontology. Dent Clin North Am. 2022; 66 (1): xi-xiii.

  105. Baranwal A, Kumar A, Priyadharshini A, Oggu GS, Bhatnagar I, Srivastava A et al. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol. 2018; 110: 110-123.

  106. Wang L, Wu Y, Hu T, Ma PX, Guo B. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomater. 2019; 96: 175-187.

  107. Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020; 21 (2): 487.

  108. Singh BN, Veeresh V, Mallick SP, Jain Y, Sinha S, Rastogi A et al. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int J Biol Macromol. 2019; 133: 817-830.

  109. P NC, S KB, V SK. Multifunctional organic and inorganic hybrid bionanocomposite of chitosan/poly(vinyl alcohol)/nanobioactive glass/nanocellulose for bone tissue engineering. J Mech Behav Biomed Mater. 2022; 135: 105427.

  110. Kumar P, Saini M, Dehiya BS, Umar A, Sindhu A, Mohammed H et al. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. Int J Biol Macromol. 2020; 149: 1-10.

  111. Chaudhuri B, Mondal B, Ray SK, Sarkar SC. A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloids Surf B. Biointerfaces 2016; 143: 71-80.

  112. Gumusderelioglu M, Sunal E, Tolga Demirtas T, Kiremitci AS. Chitosan-based double-faced barrier membrane coated with functional nanostructures and loaded with BMP-6. J Mater Sci Mater Med. 2019; 31 (1): 4. doi: 10.1007/S10856-019-6331-x.

  113. Januariyasa IK, Ana ID, Yusuf Y. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020; 107: 110347.

  114. Suneetha M, Rao KM, Han SS. Mechanically improved porous hydrogels with polysaccharides via polyelectrolyte complexation for bone tissue engineering. Int J Biol Macromol. 2020; 144: 160-169.

  115. Chen J, Xie C, Li Y, Sun Q, Yu F, Li K et al. A multifunctional metformin loaded carboxymethyl chitosan/tannic acid/manganese composite hydrogel with promising capabilities for age-related bone defect repair. Carbohydr Polym. 2025; 358: 123526. doi: 10.1016/j.carbpol.2025.123526.

  116. Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M et al. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 2019; 86: 235-246.

  117. Nakashima M, Iohara K, Murakami M. Dental pulp stem cells and regeneration: dental pulp stem cells and regeneration. Endod Topics. 2013; 28 (1): 38-50.

  118. Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E. Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int. 2016; 2016: 4709572.

  119. Marrazzo P, Paduano F, Palmieri F, Marrelli M, Tatullo M. Highly efficient in vitro reparative behaviour of dental pulp stem cells cultured with standardised platelet lysate supplementation. Stem Cells Int. 2016; 2016: 7230987.

  120. Tatullo M, Codispoti B, Pacifici A, Palmieri F, Marrelli M, Pacifici L et al. Potential use of human periapical cyst-mesenchymal stem cells (hPCy-MSCs) as a novel stem cell source for regenerative medicine applications. Front Cell Dev Biol. 2017; 5: 103. doi: 10.3389/FCELL.2017.00103.

  121. Sharifi F, Hasani M, Atyabi SM, Yu B, Ghalandari B, Li D et al. Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation. Mol Biol Rep. 2022; 49 (12): 12063-12075.

  122. Qi P, Ning Z, Zhang X. Synergistic effects of 3D chitosan-based hybrid scaffolds and mesenchymal stem cells in orthopaedic tissue engineering. IET Nanobiotechnol. 2023; 17 (2): 41-48.

  123. Kudiyarasu S, Karuppan-Perumal MK, Rajan-Renuka R, Manickam-Natrajan P. Chitosan composite with mesenchymal stem cells: Properties, mechanism, and its application in bone regeneration. Int J Biol Macromol. 2024; 275 (Pt 1): 133502. doi: 10.1016/j.ijbiomac.2024.133502.

  124. Liao Y, Li H, Shu R, Chen H, Zhao L, Song Z et al. Mesoporous hydroxyapatite/chitosan loaded with recombinant-human amelogenin could enhance antibacterial effect and promote periodontal regeneration. Front Cell Infect Microbiol. 2020; 10: 180.

  125. Sukpaita T, Chirachanchai S, Suwattanachai P, Everts V, Pimkhaokham A, Ampornaramveth RS. In vivo bone regeneration induced by a scaffold of chitosan/dicarboxylic acid seeded with human periodontal ligament cells. Int J Mol Sci. 2019; 20 (19): 4883.

  126. Huang TY, Su WT, Chen PH. Comparing the effects of chitosan scaffolds containing various divalent metal phosphates on osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Biol Trace Elem Res. 2018; 185 (2): 316-326.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev ADM. 2025;82