medigraphic.com
SPANISH

MEDICC Review

ISSN 1527-3172 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 3-4

<< Back Next >>

MEDICC Review 2022; 24 (3-4)

Effect of Cuban Porcine Pulmonary Surfactant (Surfacen) and rCmPI-II Protease Inhibitor on Neutrophil Elastase Activity

Lugones-Ladrón de Guevara Y, Díaz-Reyes M, Cabrera-Muñoz A, Chang-Monteagudo A, Alonso-del Rivero M, Blanco-Hidalgo O
Full text How to cite this article

Language: English
References: 50
Page: 46-52
PDF size: 360.83 Kb.


Key words:

Pulmonary surfactants, elastase inhibitor, drug carriers, neutrophils, Cuba.

ABSTRACT

INTRODUCTION Ininflammatory respiratory diseases, the imbalance between proteases and endogenous protease inhibitors leads to an exacerbated activity of human neutrophil elastase (a protease that destroys the extracellular matrix and stimulates proinfl ammatory cytokine release). Elastase is considered a target in the search for therapeutic treatments for infl ammatory respiratory diseases. Pulmonary surfactant is a promising product for this purpose, because in addition to its biophysical function, it has anti-infl ammatory properties.
OBJECTIVE Evaluate eff ect of the Cuban porcine pulmonary surfactant (Surfacen), the rCmPI-II elastase inhibitor, and the Surfacen/rCmPI-II combination on activated neutrophil elastase activity in vitro, and determine if Surfacen’s interface property changes in the presence of the inhibitor.
METHODS The anti-elastase eff ect of Surfacen, rCmPI-II and the Surfacen/rCmPI-II combination was evaluated in an in vitro model of activated neutrophils, previously purifi ed from the blood of healthy subjects. The cells were stimulated with LPS/fMLP and were incubated with diff erent concentrations of Surfacen, rCmPI-II and the Surfacen/rCmPI-II combination. Elastase activity was measured. The interface property was determined on a Langmuir surface balance.
RESULTS Surfacen at 10 mg/mL inhibited 71% of stimulated neutrophil elastase activity. rCmPI-II at 0.1 μM reduced 20% of elastase activity; at 200 μM—the maximum concentration evaluated—inhibition was 68%. Both products had a dosedependent eff ect. The Surfacen/inhibitor combination (0.5 mg/ mL/80 μM) did not aff ect the surfactant interface property or the inhibitory activity of rCmPI-II against human neutrophil elastase.
CONCLUSIONS Surfacen and the rCmPI-II inhibitor have an anti-elastase eff ect on an activated neutrophil model. rCmPI-II does not aff ect Surfacen’s interface property and, therefore, both can be evaluated for combined use in treating infl ammatory lung diseases.


REFERENCES

  1. Autili o C, Pérez-Gil J. Understanding the principlebiophysics concepts of pulmonary surfactant inhealth and disease. Arch Dis Child Fetal NeonatalEd. 2019 Jul;104(4):F443–F51. http://doi.org/10.1136/archdischild-2018-315413

  2. Han S, Mallampalli RK. The role of surfactantin lung disease and host defense against pulmonaryinfections. Ann Am Thorac Soc. 2015May;12(5):765–74. http://doi.org/10.1513/AnnalsATS.201411-507FR

  3. Fessler MB, Summer RS. Surfactant lipids atthe host–environment interface. Metabolic sensors,suppressors, and eff ectors of infl ammatorylung disease. Am J Respir Cell Mol Biol.2016 May;54(5):624–35. http:/ /doi.org/10.1165/rcmb.2016-0011PS

  4. Polin RA, Carlo WA. Surfactant replacement therapyfor preterm and term neonates with respiratorydistress. Pediatrics. 2014 Jan;133(1):156–63.http://doi.org/10.1542/peds.2013-3443

  5. Blanco O, Pérez-Gil J. Biochemical and pharmacologicaldiff erences between preparations ofexogenous natural surfactant used to treat respiratorydistress syndrome: role of the diff erentcomponents in an effi cient pulmonary surfactant.European J Pharmacol. 2007 Jul 30;568(1–3):1–15. http://doi.org/10.1016/j.ejphar.2007.04.035

  6. Center for State Control of Medicines, Equipmentsand Medical Devices (CU) [Internet].Havana: Center for Control of Medicines, Equipmentand Medical Devices – CECMED (CU);c2022. Registro. SURFACEN® (Surfactante pulmonarnatural); 1995 Apr 7 [revised 2022 Feb 2;cited 2022 Apr 21]. 9 p. Available at: https://www.cecmed.cu/registro/rcp/biologicos/surfacenr-surfactante-pulmonar-natural. Spanish.

  7. Yang SC, T sai YF, Pan YL, Hwang TL. Understandingthe role of neutrophils in acute respiratorydistress syndrome. Biomed J. 2021Aug;44(4):439–46. https://d oi.org/10.1016/j.bj.2020.09.001

  8. Jasper AE, McIver WJ, Sapey E, Walton GM.Understanding the role of neutrophils in chronicinfl ammatory airway disease. F1000Res. 2019Apr 26;8. http://doi.org/10.12688/f1000research.18411.1

  9. Korkmaz B, Moreau T, Gauthier F. Neutrophilelastase, proteinase 3 and cathepsin G: physicochemicalproperties, activity and physiopathologicalfunctions. Biochimie. 2008 Feb;90(2):227–42.http://doi.org/ 10.1016/j.biochi.2007.10.009

  10. Tsai YF, H wang TL. Neutrophil elastase inhibitors:a patent review and potential applicationsfor infl ammatory lung diseases (2010-2014). Expert Opin Ther Pat. 2015;25(10):1145–58.http://doi.org/10.1517/13543776.2015.1061998

  11. Polverino E, Rosales-Mayor E, Dale GE, DembowskyK, Torres A. The role of neutrophil elastaseinhibitors in lung diseases. Chest. 2017Aug;152(2):249–62. http://doi.org/10.1016/j.chest.2017.03.056

  12. Ahmad S, S aleem M, Riaz N, Lee YS, DiriR, Noor A, et al. The natural polypeptides assignifi cant elastase inhibitors. Front Pharmacol.2020 Jun 5;11:688. http://doi.org/10.3389/fphar.2020.00688

  13. Kido T, Mu ramatsu K, Yatera K, Asakawa T,Otsubo H, Kubo T, et al. Effi cacy of early sivelestatadministration on acute lung injury and acuterespiratory distress syndrome. Respirology.2017 May;22(4):708–13. http://do i.org/10.1111/resp.12969

  14. Watz H, Nagelschmitz J, Kirsten A, PedersenF, van der Mey D, Schwers S, et al. Safety andeffi cacy of the human neutrophil elastase inhibitorBAY 85-8501 for the treatment of non-cysticfi brosis bronchiectasis: a randomized controlledtrial. Pulm Pharmacol Ther. 2019 Jun;56:86–93.http://doi.org/10.1016/j.pupt.2019.03.009

  15. Schulz A, Pagerols Raluy L, Kolman JP, Königs I,Trochimiuk M, Appl B, et al. The inhibitory eff ectof Curosurf® and Alveofact® on the formationof neutrophil extracellular traps. Front Immunol.2021 Jan 19;11:582895. http://do i.org/10.3389/fi mmu.2020.582895

  16. Morilla Guzmán AA, Díaz Casañas E, DebesaGarcía F, Fernández Limia O. Efectividad delSURFACEN® en neonatos prematuros con síndromede difi cultad respiratoria. Rev CubanaFarm. 2015 Jul–Sep;49(3):502–11. Spanish.

  17. Barrese-Pérez Y, Hidalg o-Sánchez AO, Ávila-Albuerne Y, Uranga-Piña R, Díaz-CasañasE, Fernández-Limia O. Surfactante pulmonarexógeno en adultos con síndrome de difi cultadrespiratoria aguda. Neumol Cir Torax. 2015 Jul–Sep;74(3):172–8. Spanish. https://dx.doi.org/10.35366/62367

  18. Rodríguez-Moya VS, Gallo-Borrero CM, SantosÁreasD, Prince-Martínez IA, Díaz-Casañas E,López-Herce Cid J. Exogenous surfactant andalveolar recruitment in the treatment of the acuterespiratory distress syndrome. Clin RespiratoryJ. 2017 Nov;11(6):1032–9. http://doi.org/10.1111/crj.12462

  19. Barrese Pérez Y, Hidalgo Sánchez AO, ÁvilaAlbuerne Y, Uranga Piña R, Díaz Casañas E,Fernández Limia O. Seguridad del tratamientocon surfactante pulmonar en el síndrome de difi -cultad respiratoria aguda en adultos. AMC [Internet].

  20. 2015 Jul 9 [cited 2016 Apr 27];19(6):557–8.Available at: http://www.revistaamc.sld.cu/index.php/amc/issue/view/88. Spanish.20. Ministry of Public Health (CU). Protocolo NacionalMINSAP vs COVID-19 [Internet]. Havana: Ministryof Public Health (CU); 2020 Apr 4 [cited 2020May 4]. 103 p. Available at: http://instituciones.sld.cu/facultadfi nlayalbarran/fi les/2020/04/Protocolo-Cuba-vs-COVID-4-4-2020.pdf. Spanish.

  21. de Guevara YLL, Hidalgo OB, Santos SS,Brunial ti MKC, Faure R, Salomao R. Effectof natural porcine surfactant in Staphylococcusaureus induced pro-inflammatorycytokines and reactive oxygen species generationin monocytes and neutrophils fromhuman blood. Int Immunopharmacol. 2014Aug;21(2):369–74. http://doi.org/10.1016/j.intimp.2014.05.020

  22. Blanco O, Ramírez W, Lugones Y, Díaz E, Morejón A, Rodríguez VS, et al. Protective eff ects ofSurfacen® in allergen-induced asthma mice model.Int Immunopharmacol. 2022 Jan;102:108391.http://doi.org/10.1016/j.intimp.2021.108391

  23. Haitsma JJ, Lachmann U, Lachmann B. Exogenoussurfac tant as a drug delivery agent. AdvDrug Delivery Rev. 2001 Apr 25;47(2–3):197–207.

  24. Boel L, Banerjee S, Chakraborty M. Postnatalsteroid s in extreme preterm infants: intra-trachealinstillation using surfactant as a vehicle. PaediatricRespir Rev. 2018 Jan;25:78–84. http://doi.org/10.1016/j.prrv.2017.05.002

  25. Hascoët JM, Picaud JC, Ligi I, Blanc T, Daoud P,Zup an V, et al. Review shows that using surfactanta number of times or as a vehicle for budesonidemay reduce the risk of bronchopulmonary dysplasia.Acta Paediatr. 2018 Jul;107(7):1140–4.http://doi.org/10.1111/apa.14171

  26. González Y, Tanaka AS, Hirata IY, del Rivero MA,Oliv a ML, Araujo MS, et al. Purifi cation and partialcharacterization of human neutrophil elastaseinhibitors from the marine snail Cenchritis muricatus(Mollusca). Comp Biochem Physiol A MolIntegr Physiol. 2007 Apr;146(4):506–13. http://doi.org/10.1016/j.cbpa.2006.01.022

  27. González Y, Pons T, Gil J, Besada V, Alonsodel-Rivero M, Tanaka AS, et al. Characterizationand comparative 3D modeling of CmPI-II,a novel ‘non-classical’Kazal-type inhibitor fromthe marine snail Cenchritis muricatus (Mollusca).Biol Chem. 2007 Nov;388(11):1183–94. http://doi.org/10.1515/BC.2007.129

  28. Cabrera-Muñoz A, Valiente PA, Rojas L, Alonsodel-River o Antigua M, Pires JR. NMR structureof CmPI-II, a non-classical Kazal protease inhibitor:understanding its conformational dynamicsand subtilisin A inhibition. J Struct Biol. 2019Jun 1;206(3):280–94. http://doi.org/10.1016/j.jsb.2019.03.011

  29. Belai Y, Hernández-Juviel JM, Bruni R, WaringAJ, Walther FJ. Addition of alpha1-antitrypsin tosurfactant improves oxygenation in surfactantdeficient rats. Am J Respir Crit Care Med. 1999Mar;159(3):917–23. http://doi.org/10.1164/ajrccm.159.3.9801121

  30. Charles G. Cochrane, inventor; The ScrippsResearch Institute, La Jolla. Compositions fortreatment and prevention of pulmonary conditions.United States patent US7863241B2. 2011 Jan. 4

  31. Manzanares D, Díaz E, Alfonso W, Escobar A,Colomé H, Muñ oz M, et al, inventors. Surfactantepulmonar natural porcino. Republic of Cuba patenteCU, A 61:35–42K. 1995. Spanish.

  32. Cabrera-Muñoz A, Rojas L, Gil DF, González-González Y, Mansur M, Camejo A, et al. Heterologousexpression of Cenchritis muricatusprotease inhibitor II (CmPI-II) in Pichia pastorissystem: purifi cation, isotopic labeling and preliminarycharacterization. Protein Expr Purif. 2016Oct;126:127–36. http://doi.org/10.1016/j.pep.2016.06.011

  33. Böyum A. Isolation of mononuclear cells andgranulocytes from hu man blood. Isolation ofmonuclear cells by one centrifugation, and ofgranulocytes by combining centrifugation andsedimentation at 1 g. Scand J Clin Lab InvestSuppl. 1968;97:77–89. PMID: 4179068.

  34. Bersani I, Kunzmann S, Speer CP. Immunomodulatoryproperties of s urfactant preparations.Expert Rev Anti Infect Ther. 2013 Jan;11(1):99–110. http://doi.org/10.1586/eri.12.156

  35. Baur FM, Brenner B, Goetze-Speer B, Neu S,Speer CP. Natural porc ine surfactant (Curosurf)down-regulates mRNA of tumor necrosis factoralpha(TNF-alpha) and TNF-alpha type II receptorin lipopolysaccharide-stimulated monocytes.Pediatr Res. 1998 Jul;44(1):32–6. http://doi.org/10.1203/00006450-199807000-00005

  36. Tegtmeyer FK, Gortner L, Ludwig A, Brandt E. Invitro modulation of induced neutrophil activationby diff erent surfactant preparations. Eur Respir J.1996 Apr;9(4):752–7. http://doi.org/10.1183/09031936.96.09040752

  37. Boston ME, Frech GC, Chacón-Cruz E, BuescherES, Oelberg DG. Surf actant releasesinternal calcium stores in neutrophils by Gprotein-activated pathway. Exp Biol Med (Maywood).2004 Jan;229(1):99–107. http://doi.org/10.1177/153537020422900112

  38. Fujino N, Kubo H, Suzuki T, Suzuki T, He M,Yamada M, et al. Admin istration of a specifi cinhibitor of neutrophil elastase attenuates pulmonaryfi brosis after acute lung injury in mice. ExpLung Res. 2012 Feb;38(1):28–36. http://doi.org/10.3109/01902148.2011.633306

  39. Tagami T, Tosa R, Omura M, Fukushima H,Kaneko T, Endo T, et al. E ff ect of a selectiveneutrophil elastase inhibitor on mortality andventilator-free days in patients with increasedextravascular lung water: a post hoc analysisof the PiCCO Pulmonary Edema Study. JIntensive Care. 2014 Dec 31;2(1):67. http://doi.org/10.1186/s40560-014-0067-y

  40. Tsai Y-F, Yu H-P, Chang W-Y, Liu F-C, HuangZ-C, Hwang T-L. Sirtin ol inhibits neutrophil elastaseactivity and attenuates lipopolysaccharidemediatedacute lung injury in mice. Sci Reports.2015 Feb 10;5:8347. http://doi.org/10.1038/srep08347

  41. Dunlevy FK, Martin SL, de Courcey F, ElbornJS, Ennis M. Anti-infl ammatory eff ects ofDX-890, a human neutrophil elastase inhibitor.J Cyst Fibros. 2012 Jul;11(4):300–4. http://doi.org/10.1016/j.jcf.2012.02.003

  42. Crocetti L, Giovannoni MP, Cantini N, GuerriniG, Vergelli C, Sch e petkin IA, et al. Novelsulfonamide analogs of sivelestat as potenthuman neutrophil elastase inhibitors. FrontChem. 2020 Sep 1;8:795. http://doi.org/10.3389/fchem.2020.00795

  43. Wewers MD, Casolaro MA, Sellers SE, SwayzeSC, McPhaul KM, Wittes JT, et al. Replacementtherapy for alpha 1-antitrypsin defi ciency associatedwith emphysema. N Engl J Med. 1987Apr 23;316(17):1055–62. http://doi.org/10.1056/nejm198704233161704

  44. Mohanka M, Khemasuwan D, Stoller JK. Areview of augmentation ther apy for alpha-1 antitrypsindefi ciency. Expert Opinion Biol Ther. 2012Jun;12(6):685–700. http://doi.org/10.1517/14712598.2012.676638

  45. Gibson PG, Qin L, Puah SH. COVID-19 acuterespiratory distress syn drome (ARDS): clinicalfeatures and diff erences from typical pre-COVID-19 ARDS. Med J Aust. 2020 Jul;213(2):54–6.e1. http://doi.org/10.5694/mja2.50674

  46. Fan E, Beitler JR, Brochard L, Calfee CS, FergusonND, Slutsky AS, et al. COVID-19-associatedacute respiratory distress syndrome: is adiff erent approach to management warranted?Lancet Respir Med. 2020 Aug;8(8):816–21.http://doi.org/10.1016/s2213-2600(20)30304-0

  47. Busani S, Dall’Ara L, Tonelli R, Clini E, Munari E,Venturelli S, et al. Surfactant replacement mighthelp recovery of low-compliance lung in severeCOVID-19 pneumonia. Therc Adv Resp Dis.2020 Jan–Dec;14:1753466620951043. http://doi.org/10.1177/175346662095104344

  48. Bautin AEB, Avdeev SN, Seyliev AA, ShvechkovaMV, Merzhoeva ZM, Trushenko NV,et al. [Inhalation surfactant therapy in theintegrated treatment of severe COVID-19pneumonia]. Tuberc Lung Dis. 2020;98(9).http://doi.org/10.21292/2075-1230-2020-98-9-6-12. Russian.

  49. Díaz Casañas E, Rodriguez Moya VS, Montes deOca Martínez N. Surfactante pulmonar: posible intervenciónfrente al nuevo Síndrome Respiratorio AgudoSevero Coronavirus 2 (SARS-CoV-2). Rev HabaneraCienc Médicas. 2020;19(Suppl 1):1–5. Spanish.

  50. Mohamed MMA, El-Shimy IA, Hadi MA. Neutrophilelastase inhibitors: a pot ential prophylactic treatmentoption for SARSCoV-2-induced respiratorycomplications? Crit Care 2020 Jun 8;24(311):1–2.http://doi.org/10.3389/fphar.2020.00688




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

MEDICC Review. 2022;24