2022, Number 3-4
<< Back Next >>
MEDICC Review 2022; 24 (3-4)
A Shift in SARS-CoV-2 Omicron Variant´s Entry Pathway Might Explain Different Clinical Outcomes
Machado-Curbelo C, Gutiérrez-Gil J, González-Quevedo A
Language: Spanish
References: 26
Page: 68-71
PDF size: 177.52 Kb.
ABSTRACT
Globally, SARS CoV-2 omicron variant has led to a notable
increase of COVID-19 diagnoses, although with less severe
clinical manifestations and decreased hospitalizations. The
omicron wave swelled faster than previous waves, completely
displacing the delta variant within weeks, and creating worldwide
concern about fi nal, successful pandemic control. Some
authors contend that symptoms associated to omicron diff er
from ‘traditional’ symptoms and more closely resemble those
of the common cold.
One major COVID-19 symptom frequent with other variants—
loss of taste and smell—is rarely present with omicron. This
may be of interest, since it has also been suggested that direct
SARS-CoV-2 invasion into the brainstem through the olfactory
nerves by transsynaptic pathways could provide one explanation
for the acute respiratory distress syndrome refractory to
treatment. Brainstem infection by SARS-CoV-2 can severely
damage the respiratory center, triggering functional deviations
that aff ect involuntary respiration, leading to acute respiratory
distress syndrome refractory to treatment, the main cause
of death in COVID-19 patients. A shift in the omicron SARSCoV-
2 entry pathway from cell-surface fusion, triggered by
TMPRSS2, to cathepsin-dependent fusion within the endosome,
may aff ect transmission, cellular tropism and pathogenesis.
Therefore, we can hypothesize that this entrance
modifi cation may impact transmission from the olfactory nerve
to the brainstem through transsynaptic pathways. A decrement
of the virus’s direct invasion into the brainstem could diminish
respiratory center dysfunction, reducing acute respiratory distress
syndrome and the need for mechanical ventilation.
REFERENCES
Abdullah F, Myers J, Basu D, Tintinger G, UeckermannV, Mathebula M, et al. Decreased severityof disease during the fi rst global omicron variantcovid-19 outbreak in a large hospital in Tshwane,South Africa. Int J Infect Dis. 2021 Mar;116:38–42. https://doi.org/10.1016/j.ijid.2021.12.357
World Health Organization [Internet]. Geneva:World Health Organization; c2022. Activities.TrackingSARS-CoV-2 variants; [updated 2022 Jul 7;cited 2022 Feb 12]. Available at: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
Chen J, Wang R, Gilby NB, Wei GW. Omicronvariant (B.1.1.529): infectivity, vaccine breakthrough,and antibody resistance. J Chem InfMod. 2022 Jan 24;62(2):412–22. https://doi.org/10.1021/acs.jcim.1c01451
Hui KPY, Ho JCW, Cheung M-C, Ng K-C, ChingRHH, Lai K-L, et al. SARS-CoV-2 Omicron variantreplication in human bronchus and lung exvivo. Nature. 2022 Mar;603(7902):715–20.https://doi.org/10.1038/s41586-022-04479-6
Tureček P, Kleisner K. Symptomic mimicrybetween SARS-CoV-2 and the common coldcomplex. Biosemiotics. 2022;15(1):61–6. https://doi.org/10.1007/s12304-021-09472-6
Weir EM, Reed DR, Pepino MY, Veldhuizen MG,Hayes JE. Massively collaborative crowdsourcedresearch on COVID19 and the chemical senses:insights and outcomes. Food Qual Prefer. 2022Apr;97:104483. https://doi.org/10.1016/j.foodqual.2021.104483
Rodríguez-Sevilla JJ, Güerri-Fernández R, BertranRecasens B. Is there less alteration of smellsensation in patients with Omicron SARS-CoV-2variant infection? Front Med (Lausanne). 2022Apr 12;12;9:852998. https://doi.org/10.3389/fmed.2022.852998
Boscolo-Rizzo P, Tirelli G, Meloni P, Hopkins C,Madeddu G, De Vito A, et al. COVID-19-relatedsmell and taste impairment with widespread diff usionof SARS-CoV-2 Omicron variant. Int ForumAllergy Rhinol. 2022 Mar 14;10.1002/alr.22995.Online ahead of print. https://doi.org/10.1101/2022.02.17.22271116
Fall A, Eldesouki RE, Sachithanandham J, MorrisCP, Norton JM, Gaston DC, et al. The displacementof the SARS-CoV-2 variant Delta with Omicron:An investigation of hospital admissions andupper respiratory viral loads. EBioMedicine. 2022May;79:104008. https://doi.org/10.1016/j.ebiom.2022.104008
Machado-Curbelo C. Silent or ‘happy’ hypoxemia:an urgent dilemma for COVID-19 patientcare. MEDICC Rev. 2020 Oct;22(4):85–6. https://doi.org/10.37757/MR2020.V22.N4.9
Machado-Curbelo C. Severe COVID-19 cases:is respiratory distress partially explained by centralnervous system involvement? MEDICC Rev.2020 Apr;22(2):38–9. https://doi.org/10.37757/MR2020.V22.N2.10
Machado C, DeFina PA, Chinchilla M, MachadoY, Machado Y. Brainstem dysfunction in SARSCOV-2 infection can be a potential cause ofrespiratory distress. Neurol India. 2020 Sep‒Oct;68(5):989‒93. https://doi.org/10.4103/0028-3886.299165. PMID: 33109839.
Bulfamante G, Bocci T, Falleni M, Campiglio L,Coppola S, Tosi D. Brainstem neuropathologyin two cases of COVID-19: SARS-CoV-2 trafficking between brain and lung. J Neurol. 2021Dec;268(12):4486–91. https://doi.org/10.1007/s00415-021-10604-8
Turtle L. Respiratory failure alone does not suggestcentral nervous system invasion by SARSCoV-2. J Med Virol. 2020 Jul;92(7):705–6. https://doi.org/10.1002/jmv.25828
Bocci T, Bulfamante G, Campiglio L, Coppola S,Falleni M, Chiumello D, et al. Brainstem clinicaland neurophysiological involvement in COVID-19. J Neurol. 2021 Oct;268(10):3598–600.https://doi.org/10.1007/s00415-021-10474-0
Vecchio E, Gallicchio L, Caporusso N, RecchiaV, Didonna L, Pezzuto G, et al. Neurophysiologicalaspects in SARS-CoV-2–induced acuterespiratory distress syndrome. Front Neurol.2022 May 16;13:868538. https://doi.org/10.3389/fneur.2022.868538
Sun T, Guan J, You C. The neuroinvasive potentialof severe acute respiratory syndrome coronavirus2. Brain Behav Immun. 2020 Aug;88:59.https://doi.org/10.1016/j.bbi.2020.05.079
Bauer L, Laksono BM, de Vrij FMS, Kushner SA,Harschnitz O, van Riel D. The neuroinvasiveness,neurotropism, and neurovirulence of SARSCoV-2. Trends Neurosci. 2022 May;45(5):358–68. https://doi.org/10.1016/j.tins.2022.02.006
Hoff mann M, Kleine-Weber H, SchroederS, Krüger N, Herrler T, Erichsen S, et al.SARS-CoV-2 cell entry depends on ACE2 andTMPRSS2 and is blocked by a clinically provenprotease inhibitor. Cell. 2020 Apr 16;181(2):271–80. https://doi.org/10.1016/j.cell.2020.02.052
Jackson CB, Farzan M, Chen B, Choe H. Mechanismsof SARS-CoV-2 entry into cells. Nat RevMol Cell Biol. 2022 Jan;23(1):3–20. https://doi.org/10.1038/s41580-021-00418-x
Sun Y, Lin W, Dong W, Xu J. Origin and evolutionaryanalysis of the SARS-CoV-2 Omicron variant.J Biosaf Biosecur. 2022 Jun;4(1):33–7. https://doi.org/10.1016/j.jobb.2021.12.001
Sommerstein R, Kochen MM, Messerli FH, GräniC. Coronavirus Disease 2019 (COVID-19): doangiotensin-converting enzyme inhibitors/angiotensinreceptor blockers have a biphasic eff ect?J Am Heart Assoc. 2020 Apr 7;9(7):e016509.https://doi.org/10.1161/JAHA.120.016509
Butowt R, von Bartheld CS. The route of SARSCoV-2 to brain infection: have we been barkingup the wrong tree? Mol Neurodegener. 2022 Mar15;17(1):20. https://doi.org/10.1186/s13024-022-00529-9
Peacock TP, Brown JC, Zhou J, Zhou J,Thakur N, Sukhova K, et al. The SARS-CoV-2variant, Omicron, shows rapid replication inhuman primary nasal epithelial cultures andeffi ciently uses the endosomal route of entry.bioRxiv [Preprint]. 2022 Jan 3. https://doi.org/10.1101/2021.12.31.474653
Braga L, Ali H, Secco I, Chiavacci E, Neves G,Goldhill D, et al. Drugs that inhibit TMEM16 proteinsblock SARS-CoV-2 spike-induced syncytia.Nature. 2021 Jun;594(7861):88–93. https://doi.org/10.1038/s41586-021-03491-6
Liu JM, Tan BH, Wu S, Gui Y, Suo JL, Li YC.Evidence of central nervous system infectionand neuroinvasive routes, as well as neurologicalinvolvement, in the lethality of SARS-CoV-2infection. J Med Virol. 2021 Mar;93(3):1304–13.https://doi.org/10.1002/jmv.26570