medigraphic.com
SPANISH

Bioquimia

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2009, Number 2

<< Back Next >>

Bioquimia 2009; 34 (2)

Radiopharmacokinetics and uptake of 99mTc-cRGD in av b3 integrins for imaging angiogenesis in induced malignant tumors in athymic mice

López-Durán FA, Pedraza-López M, Arteaga MC, Hernández-Hernández E, García-Becerra R, Ordaz-Rosado D
Full text How to cite this article

Language: Spanish
References: 31
Page: 61-68
PDF size: 129.60 Kb.


Key words:

Radiolabelled RGD-peptide, integrin av b3, molecular imaging, angiogenesis.

ABSTRACT

The multistep process of angiogenesis offers several targets for therapeutic interventions. One molecular target structure is the alfa five beta three (av b3 ) integrin which is expressed on vascular endothelial cells and over-expressed in cancer tumor angiogenesis. To image neoangiogenesis in athymic mice with induced pancreatic, breast and prostate malignant tumors a new radiopharmaceutical was developed. The 99mTc-EDDA/HYNIC-cyclic-Arg-Gly-Asp-D-Phe-Lys (99mTc-cRGD) targets integrin receptors av b3 and was prepared with an average radiochemical purity › 95 %. 99mTc-cRGD shows high in vivo stability, fast blood clearance and rapid renal excretion in mice. There are statistical differences between tumor/muscle ratios for the 3 tumors studied. The highest tumor/non-target ratio was found in breast cancer (7.2 after 24 h) and a representative dorsal SPECT image was obtained where the tumor showed up very clearly over the background tissue. The high resolution of the image implies that 99mTc-cRGD will be of great value in nuclear medicine as a potential radiopharmaceutical forav b3integrins receptor uptake and for imaging neoangiogenesis in neoplastic tissue and to follow up cancer tumor progression.


REFERENCES

  1. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407: 249-57.

  2. Haubner R. av b3-integrin imaging: a new approach to characterize angiogenesis? Eur J Nucl Med Mol Imaging. 2006; 33: 54-63.

  3. Janssen M, Oyen WJ, Massuger LF, Frielink C, Dijkgraaf I, Edwards DS, et al. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm. 2002; 17: 641-6.

  4. Line BR, Mitra A, Nan A, Ghandehari H. Targeting tumor angiogenesis: Comparison of peptide and polymer-peptide conjugates. J Nucl Med. 2005; 40: 1552-60.

  5. Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin alphaV gene expression in human melanoma tumourigenicity. J Clin Invest. 1992; 89: 2018-22.

  6. D’Andrea LD, Del Gatto A, Pedone C, Benedetti E. Peptide-based molecules in angiogenesis. Chem Biol Drug Des. 2006; 67: 115-26.

  7. Kok RJ, Schraa AJ, Bos EJ, Moorlag HE, Asgeirsdóttir SA, Everts M, et al. Preparation and functional evaluation of RGD-modified proteins as alpha(v)beta(3) integrin directed therapeutics. Bioconjug Chem. 2002; 13: 128-35.

  8. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled alpha(v)beta3 integrin antagonists: A new class of tracers for tumor targeting. J Nucl Med. 1999; 40: 1061-71.

  9. Haubner R, Wester HJ. Radiolabed tracers for imaging of tumour angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des. 2004; 10: 1439-55.

  10. Yoshimoto M, Ogawa K, Washiyama K, Shikano N, Mori H, Amano R, et al. Alpha(v)beta(3) Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer. 2008; 123: 709-15.

  11. Li ZB, Chen K, Chen X. (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur J Nucl Med Mol Imaging. 2008; 35: 1100-8.

  12. Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, et al. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med. 2008; 49: 830-6.

  13. Knight LC. In handbook of radiopharmaceuticals; Welch MJ, and Redvanly CS, eds. England: John Wiley & Sons; 2003. p. 643-84.

  14. Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. 64Cu-Labeled tetrameric and octameric RGD peptides for small-animal PET of tumor av b3 integrin expression. J Nucl Med. 2007; 48: 1162-71

  15. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated av b3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med. 2005; 2: 29.

  16. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin av b3 expression with 18F-FRGD2. J Nucl Med. 2006; 47: 113-21.

  17. Li ZB, Wu Z, Chen K, Ryu EK, Chen X. 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med. 2008; 49: 453-61.

  18. Glaser M, Morrison M, Solbakken M, Arukwe J, Karlsen H, Wiggen U, et al. Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with novel [18F]fluorinated aldehyde-containing prosthetic groups. Bioconjug Chem. 2008; 19: 951-7.

  19. Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, et al. MicroPET of tumor integrin alpha-beta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med. 2007; 48: 1536-44.

  20. Liu S, Edwards DS. 99mTc-Labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev. 1999; 99: 2235-68.

  21. Bock M, Bruchertseifer F, Haubner R, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M, et al. Tc-99m-, Re-188- and Y-90-labeled av b3 antagonists: promising tracer for tumor-induced angiogenesis. J Nucl Med. 2000; 41: 41P.

  22. Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ. In vitro and in vivo evaluation of a technetium-99m-Labeled cyclic RGD peptide as a specific marker of av b3 integrin for tumor imaging. Bioconjugate Chem. 2002; 13: 561-70.

  23. Liu S, Hsieh WY, Kim YS, Mohammed SI. Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDfK dimer. Bioconjugate Chem. 2005; 16: 1580-8.

  24. Decristoforo C, Faintuch-Linkowski B, Rey A, von Guggenberg E, Rupprich M, Hernandez-Gonzales I, et al. [99mTc]HYNIC-RGD for imagin integrin av b3 expression. Nucl Med Biol. 2006; 33: 945-52.

  25. Ferro-Flores G, Arteaga de Murphy C, Rodríguez-Cortés J, Pedraza-López M, Ramírez-Iglesias T. Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys3]-Bombesin for imaging of gastrin-releasing peptide receptor-positive tumours. Nucl Med Commun. 2006; 27: 371-6.

  26. Larrea F, García-Becerra R, Lemus AE, García GA, Pérez-Palacios G, Jackson KJ, et al. A-ring reduced metabolites of 19-nor synthetic progestins as subtype selective agonists for ERa. Endocrinology. 2001; 142: 3791-9.

  27. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005; 46: 1023-7.

  28. Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, Sirmalis G, et al. Related imaging of metastatic melanoma utilizing a technetium-99m labelled RGD-containing synthetic pepetide. Eur J Nucl Med. 1998; 25: 1383-9.

  29. Noiri E, Goligorsky MS, Wang GJ, Wang J, Cabahug CJ, Sharma S, et al. Biodistribution and clearance of 99mTc-labeled Arg-Gly-Asp(RGD) peptide in rats with ischemic acute renal failure. J Am Soc Nephrol. 1996; 7: 2682-8.

  30. Fani M, Psimadas D, Zikos C, Xanthopoulos S, Loudos GK, Bouziotis P, et al. Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis. Anticancer Res. 2006; 26: 431-4.

  31. Chen X, Sievers E, Hou Y, Park R, Tohme M, Bart R, et al. Integrin av b3-Targeted Imaging of Lung Cancer. Neoplasia. 2005; 7: 271-9.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Bioquimia. 2009;34