medigraphic.com
SPANISH

Revista Cubana de Investigaciones Biomédicas

ISSN 1561-3011 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2011, Number 1

<< Back Next >>

Rev Cubana Invest Bioméd 2011; 30 (1)

Growth effect in diffusion reaction processes, an approach to growth biology

Garzón-Alvarado DA, María RA, Landinez PN
Full text How to cite this article

Language: Spanish
References: 28
Page: 64/82
PDF size: 583.90 Kb.


Key words:

Turing's pattern, numerical solution, finite elements, mechanics of continuous environment.

ABSTRACT

The behavior of reaction-diffusion equations has been studied in different fields of biology, bioengineering and chemistry, among others. Interestingly, when the parameters of reaction-diffusion system are placed in the Turing's space, solution leads to formation of Turing's patterns remaining stable in time and unstable in space. These patterns may be modified due to action of growth of domain where reaction is developed. The objective of present paper is to propose in general, the reaction-diffusion equations over the growing domains in 2D and 3D. Also, to study the growth effect on the patterns formation some numerical examples on different geometries must to be solved. For numerical solution we used the finite elements method together with the Newton-Raphson method to approach of the partial nolinear differential equations. It was noted that the growth to affect the Turing's patterns formation generating complex structures in the domain.


REFERENCES

  1. Madzvamuse A. A numerical approach to the study of spatial pattern formation. D Phil thesis, University of Oxford, 2000.

  2. Meinhardt H. Models of Biological Pattern Formation. New York: Academic Press; 1982.

  3. Madzvamuse A. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J Comp Phys. 2005; 24(1):239-63.

  4. Madzvamuse A, Sekimura T, Thomas RDK, Wathen AJ, Maini PK. A moving grid finite element method for the study of spatial pattern formation in Biological problems. In: T. Sekimura, S. Noji, N. Nueno and P.K. Maini, Editors, Morphogenesis and Pattern Formation in Biological Systems. Experiments and Models. Tokyo: Springer-Verlag; 2003. p. 59-65.

  5. Madzvamuse A, Maini PK, Wathen AJ. A moving grid finite element method applied to a model biological pattern generator, J Comp.Phys. 2003; 190:478-500.

  6. Madzvamuse A, Thomas RDK, Maini PK, Wathen AJ. A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves. Bull Math Biol. 2002; 64:501-30.

  7. Geirer A, Meinhardt H. A theory of biological pattern formation. Kybernetik. 1972;12:30-39.

  8. M. Chaplain, A.J. Ganesh and I.G. Graham, Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumor growth. J Math Biol. 2001;42:387-423.

  9. Turing A. The chemical basis of morphogenesis, Phil Trans R Soc Lond B. 1952;237:37-72.

  10. Mei Z. Numerical Bifurcation Analysis for reaction-diffusion equations. Alemania: Springer Verlag; 2000.

  11. Garzón D., Simulación de procesos de reacción-difusión: Aplicación a la morfogénesis del tejido óseo, Ph.D. Thesis . Universidad de Zaragoza. 2007.

  12. De Wit A. Spatial patterns and spatiotemporal dynamics in chemical systems. Adv. Chem Phys. 1999;109:435-513.

  13. Maini PK, Painter KJ, Chau HNP. Spatial pattern formation in chemical and biological systems, J Chem Soc Faraday Trans. 1997;93:3601-10.

  14. Kapral R, Showalter K. Chemical Waves and Patterns. Kluwer; 1995.

  15. Frederik H, Maini P, Madzvamuse A, Wathen AJ, Sekimura T. Pigmentation pattern formation in butterflies: experiments and models. C R Biologies. 2003;326:717-27.

  16. Sten Rüdiger, Ernesto M. Nicola, Jaume Casademunt, Lorenz Kramer. Theory of pattern forming systems under traveling-wave forcing. Physics Reports. 2007. 447(3-6).73-111.

  17. Sagués F, Míguez DG, Nicola EM, Muñuzuri AP, Casademunt J, Kramer L. Travelling-stripe forcing of Turing patterns. Physica D: Nonlinear Phenomena. 2004; 199(1-2):235-42.

  18. Allgower EL, Kurt Georg. Numerical path following Handbook of Numerical Analysis. VERIFICAR nombre de la publicación y autores1997;5:3-207.

  19. Painter KJ,. Othmer HG, Maini PK. Stripe formation in juvenile Pomacanthus via chemotactic response to a reaction-diffusion mechanism. Proceedings of National Academy Sciences USA. 1999;96:5549-54.

  20. Garzón-Alvarado DA, Galeano C, Mantilla JM. Experimentos numéricos sobre ecuaciones de reacción convección difusión con divergencia nula del campo de velocidad. Revista Internacional de Métodos Numéricos en Ingeniería. 2010;26(2):69-81.

  21. Madzvamuse A, Maini PK. Velocity-induced numerical solutions of reactiondiffusion systems on continuously growing domains. Journal of Computational Physics. 2007;225(1):100-19.

  22. Marsden J, Hughes TJ. Mathematical Foundations of Elasticity. New York: Courier Dover Publications; 1983.

  23. Holzapfel GA. Nonlinear solid mechanics. John Wiley. 2000.

  24. Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York; Courier Dover Publications; 2003.

  25. Hoffman J. Numerical Methods for Engineers and Scientists. Falta ciudad Ed McGraw Hill; 1992.

  26. Taber L. Nonlinear Theory of elasticity: Applications in Biomechanics. Danvers, USA: World Scientific Publishing; 2004.

  27. Oñate E. Cálculo de estructuras por el método de elementos finitos. Análisis estático lineal. Ed. Centro Internacional de Métodos Numéricos en Ingeniería. 1995.

  28. Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons; 2000.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Invest Bioméd. 2011;30