medigraphic.com
SPANISH

Revista Cubana de Investigaciones Biomédicas

ISSN 1561-3011 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2011, Number 1

<< Back

Rev Cubana Invest Bioméd 2011; 30 (1)

Mechanical factors of osteochondral diseases

Gamboa MA, Garzón-Alvarado DA
Full text How to cite this article

Language: Spanish
References: 42
Page: 174-193
PDF size: 311.22 Kb.


Key words:

Osteochondrosis, etiology, growth plate, mechanobiology, computer modeling.

ABSTRACT

The osteochondroses are diseases affecting the developing skeleton and that in its advanced stages provoke deformations and changes of physical activity and movement patterns of the subjects. To achieve an effectiveness therapeutic intervention or to detect the diseases in its earliest stagers, it is necessary to know it etiology, which remains uncertain and generally it is classes as mulfifactor and idiopathic. Since they are bone growth diseases, these same responsible factors influenced on the disease pathogenesis including the mechanical loads underwent by bones. In past decades computer models have been developed to represent the mechanic factors on the bone growth allowing us to improve the understanding of mechanic implications associated to growth which corresponding with the experimental observations. In present paper is shown a review of current knowledge on boner growth process, osteochondrosis etiology and some computer models which, with some modifications or improvements, could be used in the future to modeling the disease course.


REFERENCES

  1. Ytrehus B, Carlson C, Ekman S. Etiology and pathogenesis of osteochondrosis. Vet Pathol. 2009;44:429-48.

  2. Shapiro F. Pedriatic Orthopedic Deformities. Orlando, Florida: Elsevier.-Academic Press; 2000. Ch. 4.

  3. Anderson SJ. Sports injuries. Current Problems in Pediatric and Adolescent. Health Care. 2005;35:110-64.

  4. Patel DR, Nelson TL. Sports injuries in adolescents. Medical Clinics of North America. 2000;84(4):983-1007.

  5. Blitz NM, Yu JH. Freiberg's infraction in identical twins: a case report. The Journal of Foot and Ankle Surgery. 2005;44(3):218-21.

  6. Bognadov K. Biology in Physics. Elsevier: Academic Press; 2000. Ch. 7.

  7. Glorieux FH, Jueppner HW, Pettifor JM. Pedriatic Bone. Elsevier: Academic Press; Ch. 3.

  8. Villemure I, Stokes IA. Growth plate mechanics and mechanobiology. a survey of present understanding. Journal of Biomechanics. 2009;42:1793-1803.

  9. Rauch F. Bone growth in length and width: The ying and yang of bone stability. Journal of Musculoskelet Neuronal Interactions. 2005;5(3):194-201.

  10. Shapiro F. Pedriatic Orthopedic Deformities. Elsevier Orlando, Florida AcademicPress; 2000. Ch. 3.

  11. Seibel M, Robins S, Bilezikian J. Dynamics of Bone and Cartilage Metabolism, 2nd ed. Elsevier. San Diego, California: Academic Press; 2006. Ch. 31.

  12. 12 . Shefelbine SJ, Mechanical regulation of bone growth fronts and growth plates.(Ph.D. dissertation), Stanford University; 2002.

  13. Seibel M, Robins S, Bilezikian J. Dynamics of bone and cartilage metabolism, 2nd ed. Elsevier, San Diego, California: Academic Press; 2006,: Ch. 30.

  14. Dynamics of Bone and Cartilage Metabolism. 2nd ed. Elsevier: Academic Press; San Diego, California. 2006. Ch. 32.

  15. Levenston ME, Carter DR. An energy dissipation-based model for damage stimulated bone adaptation. Journal of Biomechanics. 1998;31:579-86.

  16. Van der Meulen MC, Huiskes R. Why mechanobiology? A survey article. Journal of Biomechanics. 2002;35:401-14.

  17. Stokes IA, Clark KC, Farnum CE, Aronsson DD. Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone. 2007;41:197-205.

  18. Carter D, Van der Meulen M, Beaupré G. Mechanical factors in bone growth and development. Bone. 1996;18(1):5S-10S.

  19. Hernández CJ, Beaupré GS, Keller TS, Carter DR. The influence of bone volumefraction and ash fraction on bone strength and modulus. Bone. 2001;29(1):74-78.

  20. Lerner AL, Kuhn JL, Hollister SJ. Are regional variations in bone growth related to mechanical stress and strain parameters? Journal of Biomechanics. 1998;31:327-35.

  21. Landínez NS, Vanegas JC, Garzón DA. Modelado matemático del comportamiento mecánico de un fragmento de cartílago articular. Dyna. 2008;133- 44.

  22. Ytrehus B, Carlson C, Ekman S. Etiology and pathogenesis of osteochondrosis. Vet Pathol. 2009;44:429-48.

  23. Shapiro F. Pedriatic Orthopedic Deformities. Orlando, Florida: Elsevier.-Academic Press; 2000. Ch. 4.

  24. Anderson SJ. Sports injuries. Current Problems in Pediatric and Adolescent. Health Care. 2005;35:110-64.

  25. Patel DR, Nelson TL. Sports injuries in adolescents. Medical Clinics of North America. 2000;84(4):983-1007.

  26. Blitz NM, Yu JH. Freiberg's infraction in identical twins: a case report. The Journal of Foot and Ankle Surgery. 2005;44(3):218-21.

  27. Bognadov K. Biology in Physics. Elsevier: Academic Press; 2000. Ch. 7.

  28. Glorieux FH, Jueppner HW, Pettifor JM. Pedriatic Bone. Elsevier: Academic Press; Ch. 3.

  29. Villemure I, Stokes IA. Growth plate mechanics and mechanobiology. a survey of present understanding. Journal of Biomechanics. 2009;42:1793-1803.

  30. Rauch F. Bone growth in length and width: The ying and yang of bone stability. Journal of Musculoskelet Neuronal Interactions. 2005;5(3):194-201.

  31. Shapiro F. Pedriatic Orthopedic Deformities. Elsevier Orlando, Florida AcademicPress; 2000. Ch. 3.

  32. Seibel M, Robins S, Bilezikian J. Dynamics of Bone and Cartilage Metabolism, 2nd ed. Elsevier. San Diego, California: Academic Press; 2006. Ch. 31.

  33. 12 . Shefelbine SJ, Mechanical regulation of bone growth fronts and growth plates.(Ph.D. dissertation), Stanford University; 2002.

  34. Seibel M, Robins S, Bilezikian J. Dynamics of bone and cartilage metabolism, 2nd ed. Elsevier, San Diego, California: Academic Press; 2006,: Ch. 30.

  35. Dynamics of Bone and Cartilage Metabolism. 2nd ed. Elsevier: Academic Press; San Diego, California. 2006. Ch. 32.

  36. Levenston ME, Carter DR. An energy dissipation-based model for damage stimulated bone adaptation. Journal of Biomechanics. 1998;31:579-86.

  37. Van der Meulen MC, Huiskes R. Why mechanobiology? A survey article. Journal of Biomechanics. 2002;35:401-14.

  38. Stokes IA, Clark KC, Farnum CE, Aronsson DD. Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone. 2007;41:197-205.

  39. Carter D, Van der Meulen M, Beaupré G. Mechanical factors in bone growth and development. Bone. 1996;18(1):5S-10S.

  40. Hernández CJ, Beaupré GS, Keller TS, Carter DR. The influence of bone volumefraction and ash fraction on bone strength and modulus. Bone. 2001;29(1):74-78.

  41. Lerner AL, Kuhn JL, Hollister SJ. Are regional variations in bone growth related to mechanical stress and strain parameters? Journal of Biomechanics. 1998;31:327-35.

  42. Landínez NS, Vanegas JC, Garzón DA. Modelado matemático del comportamiento mecánico de un fragmento de cartílago articular. Dyna. 2008;133- 44.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Invest Bioméd. 2011;30