medigraphic.com
SPANISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2012, Number 3

<< Back Next >>

Rev Cubana Plant Med 2012; 17 (3)

Effect of copper and Paraquat® on responses associated to oxidative stress in two related species of tomato

Rueda LA, Pelaez CA, Rojas M, Gil A
Full text How to cite this article

Language: Spanish
References: 17
Page:
PDF size: 80.32 Kb.


Key words:

Lycopersicon hirsutum, Lycopersicon esculentum, protoplasts, oxidative stress, polyphenols, antioxidant mechanism.

ABSTRACT

Introduction: the antioxidant capacity in plants has aroused great interest due to their potential use in food for the prevention of oxidative stress-associated diseases.
Objectives: to evaluate the effect of CuCl2 and Paraquat® induction on protoplasts and tomato seedlings belonging to Lycopersicon hirsutum Dunal and Lycopersicon esculentum Mill. species.
Methods: the production of reactive oxygen species in protoplasts of tomato both species after exposure to CuCl2 and Paraquat® (1.1'-dimethyl-4.4'-bipiridyl dichloride) was evaluated by flow cytometry. Tomato seedlings were evaluated for total polyphenol content and free radical scavenging.
Results: Paraquat® induction showed a 17.4 fold increase in reactive oxygen species production for L. hirsutum protoplasts and a 12.4 fold for L. esculentum during early events with respect to their respective untreated controls. L. esculentum showed significant slopes for free radical scavenging and total polyphenol content: 1.81 galic acid eq per hour and 5.3 % DPPH discoloration per hour, respectively. In addition, in response to the two kinds of induction, positive slopes and a correlation between total polyphenol content and free radical scavenging were observed with copper induction (correlation close to 1 and highly significant), but not significant models during Paraquat® induction.
Conclusions: these results suggest that the biosynthesis of phenolic compounds and the correlation with the free radical scavenging are not necessarily related to antioxidant activity as a cellular defense mechanism.


REFERENCES

  1. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol. 2004;55:373-99.

  2. Langebartels C, Wohlgemuth H, Kschi-eschan S, Grün S, Sandermann H. Oxidative burst and cell death in ozone-exposed plants. Plant Physiol Biochem. 2002;40:567-75.

  3. Díaz S. Estudio de la expresión de la formaldehído deshidrogenasa dependiente de glutation de Arabidopsis thaliana y su función en la patogénesis [Tesis doctoral]. Barcelona: Departamento de Bioquímica y Biología Molecular. Unidad de Ciencias, Universidad Autónoma; 2004.

  4. Apostol I, Heinstein P, Low P. Rapid stimulation of an oxidative burst during elicidation of cultured plant cells. Role in defense and signal transduction. Plant Physiol. 1989;90:106-16.

  5. Van Breusegem F, Vranova E, Dat J, Inze D. The role of active oxygen species in plant signal transduction. Plant Sci. 2001;161:405-14.

  6. Allan A, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell. 1997;9:1559-72.

  7. Bolwell G, Davies D, Gerrish C, Auh C, Murphy T. Comparative biochemistry of the oxidative burst produced by rose and french bean cells reveals two distinct mechanisms. Plant Physiol. 1998;116:1379-85.

  8. Ke S. Effects of copper on the photosynthesis and oxidative metabolism of Amaranthus tricolor seedlings. Agric Sci China. 2007;6:1182-92.

  9. Burda K, Kruk J, Strzalka K, Schmid G. Stimulation of oxygen evolution in photosystem II by copper II ions. Z Naturforsch. 2002;57c:853-7.

  10. Yruela I, Puedo J, Alonso P, Picores R. Photoinhibition of Photosystem II from Higher Plants. Effect of copper inhibition. J Biol Chem. 1996;271:27408-15.

  11. Duke S. Herbicide physiology. In: Weed physiology. Vol. II. Boca Raton, Florida: CRC Press, Inc; 2000.

  12. Karp G. Señalización celular y transducción de señales: comunicación entre células. En: Biología celular y molecular. 4ta edición. México: Ed. Mc Graw Hill; 2006.

  13. Álvarez M, Espinosa F. Jasmonatos y salicilatos: Fitohormonas clave en las reacciones de defensa de las plantas y de comunicación en el ecosistema. En: La ecofisiología vegetal: una ciencias de síntesis. España: Thomson Editores; 2004.

  14. Gould K, Lister C. Flavonoid functions in plants. In: Flavonoids Chemistry, Biochemistry and Applications. Boca Raton, United States of America: CRC Press, Taylor and Francis Group; 2006.

  15. Hammerschmidt R. Antioxidants and the regulation of defense. Physiological and Mol Plant Pathol. 2005;66:211-2

  16. Mlícková K, Luhová L, Lebeda A, Mieslerová B, Pec P. Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiol Biochem. 2004;42:753-61.

  17. Narendranath M, Imre V, Sandor D. Copper toxicity affects Photosystem 11 electron transport at the secondary quinone acceptor, QB1. Plant Physiol. 1989;90:175-9.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2012;17