medigraphic.com
SPANISH

VacciMonitor

ISSN 1025-0298 (Electronic)
ISSN 1025-028X (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2011, Number 2

<< Back Next >>

VacciMonitor 2011; 20 (2)

Transition models with intermittent missing data: implementation and application to a Cuban clinical trial

Uranga R
Full text How to cite this article

Language: Spanish
References: 11
Page: 11-16
PDF size: 272.05 Kb.


Key words:

Longitudinal data, transition model, missing data patterns, missing data mechanism, clinical assay.

ABSTRACT

The present work offers a useful tool for fitting transition models under the problematic scenario of intermittent missing data patterns in collected longitudinal data. A solution to this problem is given using the implicit easiness in the NLMIXED procedures from the statistical software SAS (Statistical Analysis System) for Windows, version 9.1.3.In addition, a practical application is provided, where a transition model matches the clinical laboratory data of a trial that evaluated, among other objectives, the safety of a skin cancer Cuban vaccine.


REFERENCES

  1. Michael Falk, Frank Marohn, René Michel, Daniel Hofmann, Maria Macke, editors. A First Course on Time Series Analysis. Examples with SAS. Würzburg, Germany: Chair of Statistics, University of Würzburg; 2006. Disponible en: http:// www.statistik-mathematik.uni-wuerzburg.de/fileadmin/ 10040800/user_upload/time_series/the_book/2006-February- 01-times.pdf Consultado: 1ro de febrero de 2011.

  2. Molenberghs G, Verbeke G. Models for discrete longitudinal data. New York: Springer–Verlag; 2005.

  3. Diggle PJ, Liang KY, Zeger SL. Analysis of Longitudinal Data. Oxford Science Publications. Oxford: Clarendon Press; 1994.

  4. Rubin DB. Inference and missing data. Biometrika 1976;63:581– 92.

  5. Little RJA, Rubin DB. Statistical Analysis with Missing Data. New York: John Wiley & Sons; 1987.

  6. Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data. New York: Springer–Verlag; 2000.

  7. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W Applied Linear Statistical Models. 4th ed. Chicago: IRWIN; 1996.

  8. SAS Institute Inc. SAS OnlineDoc® 9.1.3. Cary, NC: SAS Institute Inc; 2004.

  9. Morariu VV, Buimaga-Iarinca L. Autoregresive modeling of coding sequence lengths in bacterial genome, 2009. Disponible en: http://arxiv.org/ftp/arxiv/papers/0907/ 0907.1159.pdf . Consultado: 15 de octubre de 2010.

  10. Ding-Fei GE, Bei-Ping H, Xin-Jian X. Study of Feature Extraction Based on Autoregressive Modeling in ECG Automatic Diagnosis. Acta Automática Sinica 2007; 33(5): 462-6.

  11. Feller W. An Introduction to Probability Theory and Its Applications. 3rd ed. New York: John Wiley; 1968.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

VacciMonitor. 2011;20