medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2013, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2013; 16 (1)

El pronóstico de lluvias intensas para la Ciudad de México

Magaña V, López LC, Vázquez G
Full text How to cite this article

Language: Spanish
References: 10
Page: 18-25
PDF size: 945.20 Kb.


Key words:

Systematic errors, risk management, weather, severe weather.

ABSTRACT

Numerical Weather Prediction has become a fundamental tool in Civil Protection Institutions. Short-term numerical weather prediction for the Valley of Mexico has rarely been evaluated in a systematic way. By using daily observed precipitation data and those predicted with the mesoscale model known as MM5, an evaluation of rainfall forecast is made. It is found that making predictions of high spatial resolution in the Valley of Mexico is of limited quality mainly because of the effects of urbanization and orography over the rainfall. The lack of consistency between predicted and observed rainfall spatial patterns requires an analysis of stationary physical factors that can influence the quality of forecasts. Errors in short-term forecasts require risk management strategies to implement disaster prevention actions.


REFERENCES

  1. Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, 2003) 328 pp.

  2. Jáuregui, E. El Clima de la Ciudad de México, Temas selectos de Geografía de México, UNAM. 1a. edición (2000).131 págs.

  3. Magaña, V. & Neri, C. Eventos Hidrometeorológicos Extremos en el Valle de México (Centro de Ciencias de la Atmósfera UNAM, 2007). Págs. 26-30.

  4. Joyce, R., Janowiak, J., Arkin, P. & Xie, P. CMOPRH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology 5, 487-503 (2004).

  5. Cressman, G. An operational objective system. Monthly Weather Review 87, 367-374 (1959).

  6. Orlanski, I. A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society56, 527-530 (1975).

  7. Anthes, R.A. & Warner, T.T. Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Monthly Weather Review 106, 1045-1078 (1978).

  8. Wilks, D. Statistical Methods in Atmospheric Sciences (Academic Press, 1995) 467 pp.

  9. Pérez, J. Pronóstico Numérico del Tiempo para el Valle de México. Tesis de Maestría. Posgrado en Ciencias de la Tierra, UNAM (2004). 69 págs.

  10. Aquino Martínez, L.P. Impacto de la urbanización sobre la dinámica de las tormentas en el Valle de México. Tesis de Maestría. Posgrado en Ciencias de la Tierra UNAM (2012). 74 págs.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2013;16