medigraphic.com
SPANISH

Revista Mexicana de Medicina Física y Rehabilitación

ISSN 1405-8790 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2013, Number 2

<< Back Next >>

Rev Mex Med Fis Rehab 2013; 25 (2)

Analysis of spasticity, range of motion and hip and knee control after the use of robotic orthosis in children with cerebral palsy

Torres ABC, Pacheco SCE, Bahena ME
Full text How to cite this article

Language: Spanish
References: 16
Page: 54-62
PDF size: 377.79 Kb.


Key words:

Training, gait, orthosis, children, cerebral palsy.

ABSTRACT

Objective: To evaluate changes in spasticity, arc of movement and hip and knee control in children with cerebral palsy in the Gross Motor Function Classification System (GMFCS) level III after the use of robotics. Methods: Lokomat® robotic gait orthosis. Preclinical, experimental, longitudinal, prospective study, without randomization or control group. We measured the strength, motor control and range of motion with the assessment tools included in the Lokomat®, called L-FORCE, L-STIFF and L-ROM, before and after robotic gait training in 21 children (ages 6 to 12) of both sexes. Results: Of the 40 measurements performed on each subject, a statistical significance is obtained in the increase in strength of the right hip in flexo-extension (p ‹ 0.05), with a mean value of 3 and 4.5 in the final test. Conclusion: Of 21 patients with cerebral palsy en GMFCS level III, no changes were observed in the variables «strength», «spasticity» and «arc of movement» after 15 45-minute sessions administered every 2 days for 8 weeks with the Lokomat® robotic gait orthosis.


REFERENCES

  1. Cans C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and register. Dev Med Child Neurol. 2000; 42: 816-824.

  2. McDowell B, Kerr C, Parkes J. Interobserver agreement of the gross motor function classification system in an ambulant population of children with cerebral palsy. Dev Med Child Neurol. 2007; 49: 528-525.

  3. Mutlu A, Pistav P, Kerem M, Karahan S, Livanelioglu A. The importance of motor functional levels from the activity limitation perspective of ICF in children with cerebral palsy. Dev Med Child Neurol. 2007; 49: 528-525.

  4. Molina F, Águila AM, Maturam M, Molina J, Miangonlanz JC. Pasarela rodante con o sin sistema de suspensión del peso corporal en nińos con parálisis cerebral infantil [revisión sistemática y metaanálisis]. Rev Neurolog. 2010; 51 (3): 135-1310.

  5. Farrell E, Naber E, Gaigle P. Description of a multifaceted rehabilitation program including overground gait training for a child with cerebral palsy [case report]. Physiother Theory Prac. 2010; 26 (1): 56-561.

  6. Koenig A, Wellner M, Koneke S, Meyer-Heim A, Lunenburger L, Riener R. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Studies Health Technology Inform. 2008; 132: 204-209.

  7. Meyer-Heim A, Borggraefe I, Ammann-Reiffer C. Feasibility of robotic assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007; 49: 900-906.

  8. Molina F, Águila AM, Molina MJ, Miangolarra JC. Aplicación de sistemas robotizados en la parálisis cerebral infantil. Rev Neurol. 2010; 50: 256.

  9. Ruz E, Alcobendas M, Casado R, Muńoz A, Florido MA, González E. Sistema robotizado para la reeducación de la marcha en pacientes con lesión medular incompleta. Rev Neurol. 2009; 49: 617-622.

  10. Hocoma AG. Industriestrasse 4. Sistema Lokomat. Manual de usuario software versión 5:00. 2008.

  11. Acevedo PI. Aspectos éticos en la investigación científica. Cienc Enferm. 2002; 8 (1): 15-18. doi: 10.4067/S0717-95532002000100003.

  12. Bolliger M, Banz R, Dietz V, Lünenburger L. Standardized voluntary force measurement in a lower extremity rehabilitation robot. J Neuroeng Rehabil. 2008; 5: 23. doi: 10.1186/1743-0003-5-23.

  13. Schmartz C, Meyer-Heim AD, Müller R, Bollieger M. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil Rehabil Assist Technol. 2011; 6 (1): 29-37.

  14. Brütsch K, Shuler T, Koenig A, Zimmerli L, Koeneke S, Lünenburger L et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010; 7: 15. doi: 10.1186/1743-0003-7-15.

  15. Wellner M, Thüring T, Smajic E, von Zitzewit J, Duschau-Wicke A, Riener R. Obstacle crossing in a virtual environment with the rehabilitation gait robot Lokomat. Stud Health Technol Inform. 2007; 125: 497-499.

  16. Schuler T, Brütsch K, Müller R, van Hedel H, Mayer-Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. Neuro Rehabilitation. 2011; 28 (4): 401-411. doi: 10.3233/NRE-2011-0670.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Med Fis Rehab. 2013;25