medigraphic.com
SPANISH

Archivos de Neurociencias

Instituto Nacional de Neurología y Neurocirugía
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2013, Number s1

<< Back

Arch Neurocien 2013; 18 (s1)

Characterizacition of radiochomic EBT2 with diferent optical systems

León-Marroquín EY, García-Garduño OA, Camacho-López MÁ
Full text How to cite this article

Language: Spanish
References: 22
Page: 38-43
PDF size: 129.70 Kb.


Key words:

radiochromic film, scanner, spectrophotometer, laser.

ABSTRACT

Objective: characterization of radiochromic film EBT2 (RF-EBT2) with three different optical systems (OS): scanner, spectrophotometer and laser. Material and methods: the RF-EBT2 films were irradiated at different dose levels with a linear accelerator of a nominal energy of 6 MV and analyzed with three different OS. The film characterization consists of calibration curves, absorption and polarization spectrum. Results: in the analysis of absorption spectrum, it was found two absorptions peaks centered at 585 nm and 636nm, their positions are not dose dependent within the dose range studied. The optical density increases as the dose level increases. However, the increment depends on the wavelength at which it is measured. The polarization effect shows that change in optical density decreases as the dose increases. Finally, the calibration curve shows different sensitivity levels with each OS, nerveless the spectrophotometer presents higher film response. Conclusion: it is possible to use a spectrophotometer and a laser to analyze the response of RF-EBT2 wíth the advantage that the response of the film is orientation independent for these OS compared with a commercial flatbed scanner.


REFERENCES

  1. Wilcox E, Daskalov G. Accuracy of dose measurements and calculations within and beyond heterogeneous tissues for 6MV photon fields smaller than 4 cm produced by cyberknife. Med Phys 2008; 35:2259-66.

  2. Mack A, Mack G, Weltz D, Scheib S, Bóttcher H, Seifert V. High precision film dosimetry with GAFCHROMIC® films for quality assurance especially when using small fields. Med Phys 2003; 30:2399-408.

  3. American Association of Physicists in Medicine (AAPM) Report 63. Radiochromic film dosimetry. Med Phys 1998; 25:2093-115.

  4. Saad A, Slobodan D, Huriyya M, Nada T, Li-Heng L, Francois D. Evaluation of EBT2 model GafchromicTM film performance in water. Med Phys 2010; 37:3687-93.

  5. International Speciality Products. Gafchromic® EBT2 self developing film for radiotherapy dosimetry. 2009.

  6. Arjomandy B, Tailor R, Anand A, Sahoo N, Gillin M, Prado K, et al. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron and proton beam energies. Med Phys 2012; 37:1942-7.

  7. Lindsay P, Rink A, Ruschin M, Jaffray D. Investigation of energy dependence of EBT and EBT-2 Gafchromic film. Med Phys 2010; 37:571-6.

  8. Martisikova M, Ackerman B, Jäkel O. Analysis of uncertainties in Gafchromic EBT film dosimetry of photon beams. Phys Med Biol 2008;53:7013-27.

  9. Kalef-Ezra J, Karava K. Radiochromic film dosimetry: reflection vs transmission scanning. Med Phys 2008; 35:2308-11.

  10. Menegotti L, Delana A, Martignano A. Radiochromic film dosimetry with flatbed scanners: A fast and accurate method for dose calibration and uniformity correction with single film exposure. Med Phys 2008; 35:3078-85.

  11. Fuss M, Sturtewagen E, De Wagter C, Georg D. Dosimetric characterization of Gafchromic EBT film and its implication on film dosimetry quality assurance. Phys Med Biol 2007;52:4211-25.

  12. Devic S, Tomic N, Soares C, Podgorsak E. Optimizing the dynamic range extension of a radiochromic film dosimetry system. Med Phys 2009; 36: 429-37.

  13. Paelinck L, De Neve W, De Wagter C. Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry. Phys Med Biol 2007:52:231-42.

  14. Bouchard H, Lacroix F, Beaudoin B, Carrier J, Kawrakow I. On the characterization and uncertainty analysis of radiochromic film dosimetry. Med Phys 2009; 36:1931-46.

  15. Renade M, Li J, Dubose R, Kozelka J, Simon E, Dempsey J. A prototype quantitative film scanner for radiochromic film dosimetry. Med Phys 2008; 35:473-9.

  16. Devic S, Wang Y, Tomic N, Podgorsak E. Sensitivity of linear CCD array based film scanners used for film dosimetry. Med Phys 2006; 33:3993-6.

  17. Esparza-Moreno K. Estudio comparativo retrospectivo entre la dosimetría con película radiográfica y película radiocrómica para tratamientos con radiocirugía de neuralgia del trigémino [Tesis de Maestría en Ciencias con Especialidad en Física Médica]. Facultad de Medicina, Universidad Autónoma del Estado de México. 2011.

  18. Hupe O, Brunzendorf J. A novel method of radiochromic film dosimetryusing a color scanner. Med Phys 2006; 33:4085-94.

  19. Todorovic M, Fischer M, Cremers F, Thom E, Schmidt R. Evaluation of GafChromic EBT prototype B for external beam dose verification. Med Phys 2006; 33:1321-8.

  20. Skoog D, Holler F, Crouch S. Principios de análisis instrumental. 5th. Edición. New York. Saunders College Publishing 2008; 146-9.

  21. Butson M, Cheung T, Yu P. Evaluation of the magnitude of EBT Gafchromic film polarization effects. Australas Phys Eng Sci Med 2009; 32:21-25.

  22. Butson M, Yu P, Cheung T, Inwood D. Polarization effects on a high-sensitivity radiochromic film. Phys Med Biol 2003;48:207-11.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Neurocien. 2013;18