medigraphic.com
SPANISH

Revista Cubana de Investigaciones Biomédicas

ISSN 1561-3011 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2014, Number 1

<< Back Next >>

Rev Cubana Invest Bioméd 2014; 33 (1)

Determination of bioactivity in sodium alginate layers of hydroxyapatite disks

Fernández AME, Alves JC, González RJE, Valin FM, Valin RJL
Full text How to cite this article

Language: Spanish
References: 19
Page: 34-43
PDF size: 609.60 Kb.


Key words:

hydroxyapatite, sodium alginate, bioactivity, simulated biological fluid.

ABSTRACT

Objective: the main purpose of the study is to evaluate in vitro bioactivity in sodium alginate layers of hydroxyapatite disks.
Methods: the hydroxyapatite disks were manufactured by successive pressing and sintering in an electric furnace. The sodium alginate layers were obtained by overpressure and a 5% sodium alginate aqueous solution. For the bioactivity assay, the study samples were soaked in simulated biological fluid. Characterization of the samples was conducted by scanning electron microscopy and energy dispersive X rays.
Results: the bioactivity assay of hydroxyapatite samples with and without sodium alginate layers revealed the formation of precipitates rich in calcium and phosphorus. It was also found that an increase in the time of immersion in the simulated biological fluid brought about an increase in the size of agglomerates of apatite particles.
Conclusions: experimental results show that hydroxyapatite is indeed bioactive, and that the sodium alginate layers of hydroxyapatite disks which were studied behave bioactively.


REFERENCES

  1. Barrios I, Vásquez M, Spadavecchia U, Camero S, González G. Estudio comparativo de la bioactividad de diferentes materiales cerámicos sumergidos en fluido simulado del cuerpo. Rev LatinAm Met Mat. 2005;(1):23-30.

  2. Qu H, Xia Z, Knecht DA, Wei M. Synthesis of Dense Collagen/Apatite Composites Using a Biomimetic Method. J Am Ceram Soc. 2008;91(10):3211-15.

  3. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907-15.

  4. Morejón L, Delgado JA, Mendizábal E, Ochoa JI, Ávila G, Martínez S. Efecto de la silanización sobre la bioactividad de cementos acrílicos modificados. VII Congreso de la Sociedad Cubana de Bioingeniería. La Habana: 2007.

  5. Castro H, Ledea OE. Determinación de la bioactividad y la resistencia a la compresión de bloques de poliapatita. Quim Nova. 2010;33(4):891-2.

  6. Hui Wang, Changjian Lin, Ren Hu. Effects of structure and composition of the CaP composite coatings on apatite formation and bioactivity in simulated body fluid. Appl Surf Sci. 2009;255:4074-81.

  7. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175-9.

  8. ISO 23317: 2007. Implants for surgery- In Vitro evaluation for apatite-forming ability of implant materials. 2007.

  9. Vanzillotta PS, Sader MS, Bastos IN, de Almeida G. Improvement of in vitro titanium bioactivity by three different surface treatments. Dent Mater. 2006;22:275-82.

  10. Amin MS, Randeniya LK, Bendavid A, Martin PJ, Preston EW. Biomimetic apatite growth from simulated body fluid on various metal-oxide containing DLC thin films. Diam Relat Mater. 2012;21:42-9.

  11. González JE, Paz A. Composición de las disoluciones y parámetros de los procesos empleados en la aplicación de recubrimientos biomiméticos sobre titanio. Estado del arte. Rev CENIC Ciencias Químicas. 2009;40(2):73-9.

  12. Aparecida AH, Lia Fook MV, dos Santos ML, Guastaldi AC. Estudo da influência dos íons K+, Mg2+, So4 2- e CO3 2- na cristalização biomimética de fosfato de cálcio amorfo (acp) e conversão a fosfato octacálcico (OCP). Quim Nova. 2007;30(4):892-6.

  13. Kumar GS, Girija EK, Thamizhavel A, Yokogawa Y, Kalkura SN. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications. J Colloid Interf Sci. 2010;349:56-62.

  14. Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T. Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomaterialia. 2010;6: 2836-42.

  15. Wang G, Meng F, Ding C, Chu PK, Liu X. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface. Acta Biomaterialia. 2010; 6:990-1000.

  16. Huang J, Best SM, Bonfield W, Buckland T. Development and characterization of titanium-containing hydroxyapatite for medical applications. Acta Biomaterialia. 2010;6:241-9.

  17. Jonasova L, Müller FA, Helebrant A, Strnad J, Greil P. Hydroxyapatite formation on alkali-treated titanium with different content of Na + in the surface layer. Biomaterials. 2002;23:3095-101.

  18. Liu F, Xua J, Wang F, Zhao L, Shimizu T. Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy. Surf Coat Tech. 2010;204:3294-9.

  19. Chen XB, Li YC, Du Plessis J, Hodgson PD, Wen C. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomaterialia. 2009;5:1808-20.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Invest Bioméd. 2014;33