medigraphic.com
SPANISH

Revista de Especialidades Médico-Quirúrgicas

Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2014, Number 3

<< Back Next >>

Rev Esp Med Quir 2014; 19 (3)

Neuroinmunologic function of glia in demyelinating processes

Soto-Rodríguez G, Blanco-Álvarez VM, González-Barrios JA, Martínez-Fong D, León-Chávez BA
Full text How to cite this article

Language: Spanish
References: 53
Page: 0
PDF size: 913.98 Kb.


Key words:

Demyelination, Actived Glia, Neuroimmunology.

ABSTRACT

The brain conception as an immunologically privileged tissue has changed, up to date is known that neuroimmunological response is fundamental in the neurodegeneration process, as it can promote or inhibit it, and contribute to neuronal death. Glial cells (Microglia and Astrocytes) are the main effectors of neuroimmunological response in the demyelinating pathologies by glial activation and releasing of neurotoxic molecules as cytokines and chemokines, which originally are aimed at increasing neuroregenerative process by expressing growth factors which will promote remyelination. Thus knowledge of the mechanisms of regulation of the activation of glial cells, such as the expression of cytokines, chemokines and growth factors can help to design and development of specific neuroregeneration therapeutic for the demyelinating pathologies.


REFERENCES

  1. MEDAWAR,P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58-69 (1948).

  2. Lucin,K.M. & Wyss-Coray,T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64, 110-122 (2009).

  3. Palmer,A.M. The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol. Dis. 37, 3-12 (2010).

  4. Ransohoff,R.M. & Brown,M.A. Innate immunity in the central nervous system. J. Clin. Invest 122, 1164-1171 (2012).

  5. Galea,I., Bechmann,I., & Perry,V.H. What is immune privilege (not)? Trends Immunol. 28, 12-18 (2007).

  6. Czirr,E. & Wyss-Coray,T. The immunology of neurodegeneration. J. Clin. Invest 122, 1156-1163 (2012).

  7. Sabo,J.K. & Cate,H.S. Signalling Pathways that Inhibit the Capacity of Precursor Cells for Myelin Repair. Int. J. Mol. Sci. 14, 1031-1049 (2013).

  8. Furlan,R. et al. Activation of invariant NKT cells by alphaGal- Cer administration protects mice from MOG35-55-induced EAE: critical roles for administration route and IFN-gamma. Eur. J. Immunol. 33, 1830-1838 (2003).

  9. Rinaldi,L. & Gallo,P. Immunological markers in multiple sclerosis: tackling the missing elements. Neurol. Sci. 26 Suppl 4, S215-S217 (2005).

  10. Muldoon,L.L. et al. Immunologic privilege in the central nervous system and the blood-brain barrier. J. Cereb. Blood Flow Metab 33, 13-21 (2013).

  11. Pachter,J.S., de Vries,H.E., & Fabry,Z. The blood-brain barrier and its role in immune privilege in the central nervous system. J. Neuropathol. Exp. Neurol. 62, 593-604 (2003).

  12. Rezai-Zadeh,K., Gate,D., & Town,T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J. Neuroimmune. Pharmacol. 4, 462-475 (2009).

  13. Neumann,H. Control of glial immune function by neurons. Glia 36, 191-199 (2001).

  14. Farber,K. & Kettenmann,H. Physiology of microglial cells. Brain Res. Brain Res. Rev. 48, 133-143 (2005).

  15. Mantovani,A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677-686 (2004).

  16. Walter,S. et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem. 20, 947-956 (2007).

  17. Aloisi,F. Immune function of microglia. Glia 36, 165-179 (2001).

  18. Yang,I., Han,S.J., Kaur,G., Crane,C., & Parsa,A.T. The role of microglia in central nervous system immunity and glioma immunology. J. Clin. Neurosci. 17, 6-10 (2010).

  19. Gao,Y.J. & Ji,R.R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 126, 56-68 (2010).

  20. Clarke,L.E. & Barres,B.A. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311-321 (2013).

  21. Dong,Y. & Benveniste,E.N. Immune function of astrocytes. Glia 36, 180-190 (2001).

  22. Gee,J.R. & Keller,J.N. Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int. J. Biochem. Cell Biol. 37, 1145-1150 (2005).

  23. Suk,K. et al. Activation-induced cell death of rat astrocytes. Brain Res. 900, 342-347 (2001).

  24. Leon Chavez,B.A. et al. Regional and temporal progression of reactive astrocytosis in the brain of the myelin mutant taiep rat. Brain Res. 900, 152-155 (2001).

  25. Mucke,L. & Eddleston,M. Astrocytes in infectious and immune-mediated diseases of the central nervous system. FASEB J. 7, 1226-1232 (1993).

  26. Aronica,E., Ravizza,T., Zurolo,E., & Vezzani,A. Astrocyte immune responses in epilepsy. Glia 60, 1258-1268 (2012).

  27. Frohman,E.M., van den Noort,S., & Gupta,S. Astrocytes and intracerebral immune responses. J. Clin. Immunol. 9, 1-9 (1989).

  28. Aschner,M. Immune and inflammatory responses in the CNS: modulation by astrocytes. Toxicol. Lett. 102-103, 283-287 (1998).

  29. Suzumura,A., Takeuchi,H., Zhang,G., Kuno,R., & Mizuno,T. Roles of glia-derived cytokines on neuronal degeneration and regeneration. Ann. N. Y. Acad. Sci. 1088, 219-229 (2006).

  30. Schmitz,T. & Chew,L.J. Cytokines and myelination in the central nervous system. ScientificWorldJournal. 8, 1119-1147 (2008).

  31. Raman,D., Sobolik-Delmaire,T., & Richmond,A. Chemokines in health and disease. Exp. Cell Res. 317, 575-589 (2011).

  32. Richmond,A., Yang,J., & Su,Y. The good and the bad of chemokines/chemokine receptors in melanoma. Pigment Cell Melanoma Res. 22, 175-186 (2009).

  33. Takeshita,Y. & Ransohoff,R.M. Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol. Rev. 248, 228-239 (2012).

  34. Holman,D.W., Klein,R.S., & Ransohoff,R.M. The blood-brain barrier, chemokines and multiple sclerosis. Biochim. Biophys. Acta 1812, 220-230 (2011).

  35. Ransohoff,R.M. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity. 31, 711-721 (2009).

  36. Szczucinski,A. & Losy,J. Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol. Scand. 115, 137-146 (2007).

  37. Evans,V.A., Khoury,G., Saleh,S., Cameron,P.U., & Lewin,S.R. HIV persistence: chemokines and their signalling pathways. Cytokine Growth Factor Rev. 23, 151-157 (2012).

  38. Neves,S.R., Ram,P.T., & Iyengar,R. G protein pathways. Science 296, 1636-1639 (2002).

  39. Stamatovic,S.M. et al. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J. Cereb. Blood Flow Metab 25, 593-606 (2005).

  40. Wain,J.H., Kirby,J.A., & Ali,S. Leucocyte chemotaxis: Examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by Monocyte Chemoattractant Proteins-1, -2, -3 and -4. Clin. Exp. Immunol. 127, 436-444 (2002).

  41. Olson,T.S. & Ley,K. Chemokines and chemokine receptors in leukocyte trafficking. Am. J. Physiol Regul. Integr. Comp Physiol 283, R7-28 (2002).

  42. Guzeloglu-Kayisli,O., Kayisli,U.A., & Taylor,H.S. The role of growth factors and cytokines during implantation: endocrine and paracrine interactions. Semin. Reprod. Med. 27, 62-79 (2009).

  43. Kalluri,H.S. & Dempsey,R.J. Growth factors, stem cells, and stroke. Neurosurg. Focus. 24, E14 (2008).

  44. Torres-Aleman,I. Toward a comprehensive neurobiology of IGF-I. Dev. Neurobiol. 70, 384-396 (2010).

  45. Butt,A.M. & Dinsdale,J. Opposing actions of fibroblast growth factor-2 on early and late oligodendrocyte lineage cells in vivo. J. Neuroimmunol. 166, 75-87 (2005).

  46. McKinnon,R.D., Matsui,T., Dubois-Dalcq,M., & Aaronson,S.A. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 5, 603-614 (1990).

  47. Clemente,D., Ortega,M.C., Arenzana,F.J., & de,C.F. FGF-2 and Anosmin-1 are selectively expressed in different types of multiple sclerosis lesions. J. Neurosci. 31, 14899-14909 (2011).

  48. Rottlaender,A., Villwock,H., Addicks,K., & Kuerten,S. Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immunology 133, 370-378 (2011).

  49. Sarchielli,P. et al. Fibroblast growth factor-2 levels are elevated in the cerebrospinal fluid of multiple sclerosis patients. Neurosci. Lett. 435, 223-228 (2008).

  50. Armstrong,R.C., Le,T.Q., Flint,N.C., Vana,A.C., & Zhou,Y.X. Endogenous cell repair of chronic demyelination. J. Neuropathol. Exp. Neurol. 65, 245-256 (2006).

  51. Adamis,D. & Meagher,D. Insulin-like growth factor I and the pathogenesis of delirium: a review of current evidence. J. Aging Res. 2011, 951403 (2011).

  52. Gao,Z. & Tsirka,S.E. Animal Models of MS Reveal Multiple Roles of Microglia in Disease Pathogenesis. Neurol. Res. Int. 2011, 383087 (2011).

  53. Mayo,L., Quintana,F.J., & Weiner,H.L. The innate immune system in demyelinating disease. Immunol. Rev. 248, 170-187 (2012)




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Esp Med Quir. 2014;19