medigraphic.com
SPANISH

Revista de Investigación Clínica

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2014, Number S1

<< Back Next >>

Rev Invest Clin 2014; 66 (S1)

Sistema para medir el rango de movimiento de las articulaciones de la mano

Gutiérrez-Martínez J, Ortiz-Espinosa A, Hernández-Rodríguez PR, Núñez-Gaona MA
Full text How to cite this article

Language: English
References: 26
Page: 122-130
PDF size: 329.64 Kb.


Key words:

Bland-Altman, Goniometer, Human Kinematics, ROM.

ABSTRACT

Today, the manual goniometer is a common tool used in clinical practice to measure the range of motion (ROM) of joints in the hand. This device is not only tedious and highly timeconsuming to use, but its accuracy mainly depends on the experience of the examiner. The majority of electronic goniometers currently available on the market exhibit these same limitations. This document presents the physical design and attributes of a system known as the MULTIELGON, which can be used automatically to obtain multiple measurements of the angles of the hand’s small finger joints simultaneously using a novel angle-to-voltage transducer. The reproducibility and repeatability of the transducer were evaluated; low dispersion and high homogeneity were demonstrated. Correlation and Bland-Altman analyses were used to compare the accuracy of the novel transducer (A) and traditional manual goniometer (B); the correlation coefficient was 0.9995. The Bland-Altman analysis determined the limits of agreement (1.4° to 1.7°) with a 95% confidence interval for any variation between the instruments (A and B), which gave readings differing by less than 3.1°. Differences were sufficiently small to propose that the manual goniometer can be replaced by the transducer; moreover A is best to evaluate the hand’s small finger joints than B. The system is comprised of the device, the interface and the MULTIELGON GUI. The device consists of 14 angle-to-voltage transducers that can be attached to joints in the hand using a PVC clamp and an elastic glove. The MULTIELGON can be utilized to evaluate patients, as well as record and manage ROM data for surgical and rehabilitation decisions.


REFERENCES

  1. Engelberg R, Martin DP, Angel I, Swionskowski MF. Musculoskeletal function assessment. Reference values for patient and s130 Gutiérrez-Martínez J, et al. Motion of the joints of the human hand. Rev Invest Clin 2014; 66 (Supl. 1): s122-s130 non-patient samples, J Orthop Res 1999; 17(1): 101-9. DOI:10.1002/jor.11001701116.

  2. Salinas-Tovar S, Hernández-Leyva BE, Marín-Cotoñieto IA, Santos-Celis R, Luna-Pizarro D, López-Rojas P. Workplace Accident- Related Finger-Fracture at the Mexican Institute of Social Security. Rev Med Inst Mex Seguro Soc 2007; 45(6): 557-64.

  3. Dirección General. Informe de Autoevaluación Enero–Diciembre 2009. Instituto Nacional de Rehabilitación. Viewed: March 2010, p. 33-7. Available from: http://www inr.gob.mx/ Descargas/informes/Informe _AUTOEVALUACION_2010.pdf

  4. Buckup K. Pruebas clínicas para patología ósea, articular y muscular exploraciones, signos, síntomas. España: Editorial Elsevier; 2007, p. 127-41.

  5. Kuo LC, Cooney III, Kaufman KR, Chen QS, Su FC, An KN. A quantitative method to measure maximal workspace of the trapeziometacarpal joint-normal model development. J Orthop Res 2004; 22(3): 600-6.

  6. Li ZM, Tang J. Coordination of thumb joints during opposition. J Biomech 2007; 40(3): 502-10.

  7. Zhang X, Braido P, Lee SW, Hefner R, Redden M. A normative database of thumb circumduction in vivo: center of rotation and rage of motion. Hum Factors 2005; 47(3): 550-61.

  8. Cerveri P, De Momi E, Lopomo N, Baud-Bovy G, Barros RM, Ferrigno G. Finger Kinematic Modeling and real-time hand motion estimation. Ann Biomed Eng 2007; 35(11): 1989-2002.

  9. Cerveri P, De Momi E, Marchente M, Lopomo N, Baud-Bovy G, Barros RM, Ferrigno G. In vivo validation of a realistic kinematic model for the trapezio-metacarpal joint using an optoelectronic system. Ann Biiomed Eng 2008; 36(7): 1268-80.

  10. Comtet JJ, Rumelhart C, Cheze L, Fickry T. The trapezio-metacarpal joint: the strain of the ligaments as a function of the thumb position. Study on an enlarged model. Chirurgie de la main 2006; 25(5): 185-92.

  11. Cheze L, Dumas R, Comtet JJ, Rumelhart C, Fayet M. A joint coordinate system proposal for the study of the trapeziometacarpal joint kinematics. Computer methods in biomechanics and biomedical engineering 2009; 12(3): 277-82.

  12. Dumas R, Cheze L, Fayet M, Rumelhart C, Comtet JJ. How to define the joint movements unambiguously: proposal of standarization for the trapezometacarpal joint. Chir Main 2008; 27(5): 195-201. Doi: 10.1016/j.main.2008.08.008.

  13. ASSH (2011, Jan). Normal Range of Motion Reference Values, in: The Electronic Textbook of Hand Surgery. American Society for Surgery of the Hand. pp. 1-2. [Online]. Available: http:// www.eastonhand.com /nor/nor002.html

  14. Taboadela C. Goniometría. Una herramienta para la evaluación de las incapacidades laborales. 1a Ed. Buenos Aires: Asociart ART; 2007, p.123-56.

  15. Norkin C, White D. Measurement of Joint Motion-A Guide to Goniometry. Philadephia, United States: F. A. Davis Company; 2003; p. 137-63.

  16. Berryman N, Bandy W. Joint Range of Motion and Muscle Length Testing. St. Louis Missouri. Ed. Saunders; 2010, p. 99- 180.

  17. Viosca E, Prat J, Soler C, Peydro MA, Vivas MJ, García MA, et al. Cuadernos de biomecánica. Valoración Funcional. 3rd Ed. España: Instituto de Biomecánica de Valencia; 2007, p. 9-16.

  18. Gutiérrez-Martínez J, González-Leyva A, Ortiz-Espinosa A, Núñez-Gaona MA, Barraza-López FE, Piña-Ramírez O. Design and development of a system for analysis of movement of the hand and wrist. Revista Mexicana de Ingeniería Biomédica 2011; XXXII(1): 7-11.

  19. Wise S, Gardner W, Sabelman E, Valainis E, Wong Y, Glass K, Drace J, et al. Evaluation of a fiber optic glove for semi-automated goniometric measurements. J Rehabil Res Dev 1990; 27(4): 411-24.

  20. Kessler G, Hodges L, Walker N. Evaluation of the CyberGlove as a Whole-Hand Input Device. ACM Trans Comp-Human Interaction 1995; 2(4): 263-83.

  21. Popescu VG, Burdea GC, Bouzit M, Hentz VR. A virtual-reality- based telerehabilitation system with force feedback IEEE. Trans Inf Technol Biomed 2000; 4(1): 45-51.

  22. Braido P, Zhang X. Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Human Movement Science 2004; 22(6): 661-78. DOI:10.1016/ J.humov.2003.10.001.

  23. Hwai-Ting L, Li-Chieh K, Hsin-Yi L, Wen-Lan W, Fong-Chin S. The three-dimensional analysis of three thumb joints coordination in activities of daily living. Clinical Biomechanics 2011; 26: 371-6.

  24. Botero M, Arbelaez O, Mendoza J. ANOVA’s method used to develop the study of repeatability and reproducibility inside of measure system. Scientia et Technica 2007; XIII(37): 533-7.

  25. Duncan AJ. Quality Control and Industrial Statistics. 3rd ed. Richard D. Irwin, Homewood, Illinois; 1965; p. 910.

  26. Bland J, Altman M, Douglas G. Statistical Methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 8476: 307-10.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Invest Clin. 2014;66