medigraphic.com
SPANISH

Revista de Investigación Clínica

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2014, Number 4

<< Back Next >>

Rev Invest Clin 2014; 66 (4)

Optical coherence tomography and visual evoked potentials in patients with type 2 diabetes with and without retinopathy: preliminary report

Hernández ÓH, García-Martínez R, Lizana-Henríquez C, Ye-Ehuan F, Aguirre-Manzo L, Alcalá-Guerrero C, Maldonado-Velázquez G, Yerbes-Contreras CP
Full text How to cite this article

Language: Spanish
References: 32
Page: 330-338
PDF size: 196.65 Kb.


Key words:

Type 2 diabetes, Visual evoked potentials, Fovea thickness, Retinopathy, Optical coherence tomography.

ABSTRACT

Introduction. Diabetic retinopathy remains the leading visual complication of diabetes mellitus type 2 (DM2) in productive patients. It evolves from a non-proliferative stage, occasionally asymptomatic, until a proliferative phase with neovascularization, retinal detachment and blindness. There are many reports that compare visual, biochemical or electrophysiological parameters among diabetic patients and healthy controls. However, much less information has been published comparing parameters between diabetics with and without non-proliferative retinopathy. Thus, it is essential to know what changes take place in the retina and the visual post retinal pathway as the disease progresses, but before the establishment of a proliferative process involving blindness. Therefore, the purpose of this study was to compare and correlate electrophysiological and visual parameters of diabetics with and without non-proliferative retinopathy, using modern, non invasive techniques. These data will allow us to a better understanding of the process and to determine the use of these parameters in the monitoring of diabetes and its complications. Material and methods. This is an observational, prospective, transversal and analytical study. Twenty- two patients with DM2 were divided into two groups (50% on each group): group with non-proliferative retinopathy and group without retinopathy. We measured the central fovea thickness (CFT) by optical coherence tomography, the P100 wave of the Visual Evoked Potentials (VEP) and other visual and biochemical parameters. Results. Retinopathy patients had lower visual acuity (p ‹ 0.047), lower P100 amplitude (p ‹ 0.043) and lower rate of rise (p ‹ 0.026, 1- tailed). They also showed a more biochemical disturbance with higher glycemia (p ‹ 0.015) and HbA1c (p ‹ 0.033), and longer disease duration (p ‹ 0.011), compared with those without retinopathy. Visual acuity showed a negative correlation with disease duration (r = -0.65; p ‹ 0.017) and severity of ocular damage (r = -0.76; p ‹ 0.007) in patients with retinopathy. Conclusions. Patients with retinopathy have lower visual acuity, decreased central visual fibers and a tendency to increase the ECF. Although the data favor the use of these non-invasive techniques to monitor the disease and prevent progression of visual complications, additional studies are needed with larger sample size to confirm the results obtained here.


REFERENCES

  1. Toumilehto J, Lindstrom J, Eriksson J, Valle T, Hamalainen H, Parikka P, et al. Prevention of type-2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 18.

  2. Aguilar-Rebolledo F. Guía clínica “Neuropatía Diabética” para médicos. Plast Rest Neurol 2005; 4: 35-7.

  3. Villalpando S, De la Cruz V, Rojas R, Shamah-Levy T, Ávila MA, Gaona B, et al. Prevalence and distribution of type 2 diabetes mellitus in Mexican adult population: a probabilistic survey. Sal Pub Mex 2010; 52(Suppl. 1): 19-26.

  4. Tamez H, Gutierrez H, Cedillo J, Mora NE, Hernández MI, Gómez MD. Tratamiento con insulina en paciente hospitalizado con diabetes mellitus tipo 2. ¿Única opción? Med Int Mex 2007; 23: 196-9.

  5. Bhanu R, Vinutha Shankar MS, Karthiyanee K, Nachal A. Visual evoked potentials in non insulin dependent diabetes mellitus without retinopathy: A pilot study. Curr Neurobiol 2012; 3: 55-9.

  6. Early Treatment Diabetic Retinopathy Study Research Group. Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology 1991; 98: 742.

  7. Antonetti DA, Klein R, Gardner TW. Diabetic Retinopathy. N Engl J Med 2012; 366: 1227-39.

  8. Fercher F, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography-principles and applications. Rep Prog Phys 2003; 66: 239-303.

  9. Kwon SI, Hwang DJ, Seo JY, Park IW. Evaluation of changes of macular thickness in diabetic retinopathy after cataract surgery. Korean J Ophtalmol 2011; 25: 238-42.

  10. Fatehi F, Shaygannejad V, Mehr LK, Dehghani A. Optical coherence tomography versus visual evoked potentials in multiple sclerosis patients. Ir J Neurol 2012; 11: 12-5.

  11. Virgili G, Menchini F, Murro V, Peluso E, Rosa F, Casazza G. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst Rev 2011; 6:(7) CD008081. doi: 10.1002/ 14651858.CD008081.pub2.

  12. Alkuraya H, Kangave D, Abu El-Asrar AM. The correlation between optical coherence tomographic features and severity of retinopathy, macular thickness and visual acuity in diabetic macular edema. Int Ophthalmol 2005; 26: 93-9.

  13. Koleva-Georgieva DN, Sivkova NP. Types of diabetic macular edema assessed by optical coherence tomography. Folia Med (Plovdiv) 2008; 50: 30-8.

  14. Browning DJ, Glassman AR, Aiello LP, Beck RW, Brown DM, Fong DS, et al. Relationship between optical coherence tomography- measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmol 2007; 114: 525-36.

  15. Zacarias Hannouche R, Pereira de Ávila M. Retinal thickness measurement and evaluation of natural history of the diabetic macular edema through optical coherence tomography. Arq Bras Oftalmol 2009; 72: 433-8.

  16. Algan M, Ziegler O, Gehin P, Got I, Raspiller A, Weber M, et al. Visual evoked potentials in diabetic patients. Diabetes Care 1989; 12: 227-9.

  17. Ewing FME, Deary IJ, Strachan MWJ, Frier BM. Seeing beyond retinopathy in diabetes: Electrophysiological and psychophysical abnormalities and alterations in vision. Endocr Rev 1998; 19: 462-76.

  18. Lieth E, Gardner TW, Barber AJ, Antonetti DA, Penn State Retina Research Group. Retinal neurodegeneration: early pathology in diabetes. Clin Exp Ophthalmol 2000; 28: 3-8.

  19. Chopra D, Gupta M, Manchanda KC, Sarup Sharma R, Singh Sidhu R. A study of visual evoked potentials in patients of type-2 diabetes mellitus. J Clin Diagn Res 2011; 5: 519-22.

  20. Heravian J, Ehyaei A, Shoeibi N, Azimi A, Ostadi-Moghaddam H, Yeckta AA, et al. Pattern visual evoked potentials in patients with type II Diabetes Mellitus. J Ophthalmic Vis Res 2012; 7: 225-30.

  21. Puvanendran K, Devathasan G, Wong PK. Visual evoked responses in diabetes. J Neurol Neurosurg Psychiatry 1983; 46: 643-7.

  22. Parisi V, Uccioli L, Monticone G, Parisi L, Menzinger G, Bucci MG. Visual evoked potentials after photostress in insulin-dependent diabetic patients with or without retinopathy. Graefe’s Arch Clin Exp Ophthalmol 1994; 232: 193-8.

  23. Azal Ö, Özkardes A, Önde ME, Özata M, Özisik G, Corakçi A, Gündogan MA. Visual evoked potentials in diabetic patients. Tr J Medic Sci 1998; 28: 139-42.

  24. Gayathri V, Vijayalakshmi B, Chandrasekhar M. Electro physiological assessment of neuropathy in visual pathway of diabetes mellitus. J Diabetol 2012; 1: 4.

  25. Dolu H, Ulas UH, Bolu E, Ozkardes A, Odabasi Z, Ozata M, Vural O. Evaluation of central neuropathy in type II diabetes mellitus by multimodal evoked potentials. Acta Neurol Belg 2003; 103: 206-11.

  26. Li P, Yang Y. Pattern reversal visual evoked potentials analysis in patients with noninsulin-dependent diabetes mellitus. Hunan Yi Ke Da Xue Xue Bao 2001; 26: 283-4.

  27. A.A.AI.-idani M, Strak SK, A1-maraj KA, Kathim LA. The study of visual evoked potential changes in patients with diabetes mellitus. MJBU 2009; 27: 55-65.

  28. Hernández OH, García-Martínez R, Monteón V. Alcohol effects on the P2 component of auditory evoked potentials. An Acad Bras Cienc 2014; 86 [En prensa].

  29. Hernández OH, García-Martínez R, Monteón V. Parameters relationship between long latency brain potentials in a multisensory design: II. Evoked Potentials. Clin EEG & Neurosc 2014 [En prensa].

  30. Bressler NM, Edwards AR, Antoszyk AN, Beck RW, Browning DJ, Ciardella AP, et al. Retinal thickness on Stratus Optical Coherence Tomography™ in people with diabetes and minimal or no diabetic retinopathy. Am J Ophthalmol 2008; 145: 894-901.

  31. Otani T, Yamaguchi Y, Kishi S. Correlation between visual acuity and foveal microstructural changes in diabetic macular edema. Retina 2010; 30: 774-80.

  32. Collier A, Reid W, McInnes A, Cull RE, Ewing EJ, Clarke BF. Somatosensory and visual evoked potentials in insulin-dependent diabetics with mild peripheral neuropathy. Diabetes Res Clin Pract 1988; 5: 171-5.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Invest Clin. 2014;66