medigraphic.com
SPANISH

Medimay

ISSN 2520-9078 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2014, Number 1

<< Back Next >>

Revista de Ciencias Médicas de la Habana 2014; 20 (1)

Association between brain asymmetries by visual stimulation with lateralizations in humans

Rodríguez LIR, Rodríguez LO
Full text How to cite this article

Language: Spanish
References: 20
Page: 54-67
PDF size: 366.54 Kb.


Key words:

brain asymmetries and functional laterality, visually evoked potential, electroencephalogram, cerebral visual areas.

ABSTRACT

Introduction: motor functional lateralizations, processing a sensory stimulus and functional brain asymmetries are not fully understood and it is unknown whether there are associations between functional brain asymmetries by visual stimulation with lateralizations in humans.
Objective: to determine the relationship between motor lateralizations and brain asymmetry by sensory stimulation through the combination of subjective and objective measurement instruments.
Methods: the work was carried out with 35 healthy young adults, who underwent a series of tests of motor and sensory laterality, an electrophysiological study (visually evoked potential), simultaneously with an electroencephalogram. Visual homologous brain areas to each hemisphere and asymmetry between them were determined. Global asymmetry index was calculated between the dorsal, ventral, temporal and frontal brain regions and it was sought associations between these regions, functional and sensory lateralities.
Results: there was a predominance of right motor lateralizations regarding the sensory tests. It was observed areas of the dorsal and ventral regions in both hemispheres from the visually evoked potential in the group. The temporal visual region was highlighted to the right and the frontal to the left. It was found associations between the frontal, ventral and dorsal regions with some of the functional lateralities studied.
Conclusions: it is concluded that in certain brain areas existed predominant laterality according to the volumetric study of both hemispheres, which is not the case in specific brain regions.


REFERENCES

  1. Gannong WF, McPhee SJ. Fisiopatología médica. Una introducción a la medicina clínica. 5ed. México: Editorial Manual Moderno; 2007.

  2. Kolappan M, Henderson AP, Jenkins TM, Wheeler-Kingshott CA, Plant GT, Thompson AJ, et al. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. Journal of neurology [Internet]. 2009 [citado 20 Dic 2011];256(3). Disponible en: http://link.springer.com/article/10.1007%2Fs00415-009-0123-z#page-1

  3. Brecelj J. A VEP study of the visual pathway function in compressive lesions of the optic chiasm. Full-field versus half-field stimulation. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section [Internet]. 1992 [citado 03 Ene 2012];84(3). Disponible en: http://www.journals.elsevierhealth.com/periodicals/eep/article/0168-5597(92)90002- S/abstractref

  4. Halliday AM, Mushin J. The visual evoked potential in neuroophthalmology. Int Ophthalmology Clin 2008;20.

  5. J Vernon Odom, Michael Bach, Mitchell Brigell, Graham E Holder, Daphne L McCulloch, Alma Patrizia Tormene, et al. ISCEV standard for clinical visual evoked potentials. Documenta Ophthalmologica [Internet]. 2010 Feb [citado 08 Ene 2012];120(1). Disponible en: http://www.iscev.org/standards/pdfs/ISCEV-VEPStandard- 2010.pdf

  6. González Hernández JA, Pita CA, Castañeda H, Trujillo NB, Scherbaum WA. BET differences among simultaneous evoked frequency band responses during earlystage visual processing distinguish schizophrenia from healthy subjects. Neuroscience Letters [Internet]. 2009 [citado 08 Ene 2012];450(1). Disponible en: http://www.sciencedirect.com/science/article/pii/S0304394008015309

  7. González Hernández JA, Haupt M, Scherbaum WA. Regions with different evoked frequency band responses during early- stage visual processing distinguish mild Alzheimer dementia from mild cognitive impairment and normal aging. Neurosci Lett [Internet]. 2008 Sep [citado 2012 Ene 20];442(3). Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18634853

  8. Pascual-Marqui RD. Review of methods for solving the EEG inverse problem. Int J Bioelectromagn [Internet]. 2008 [citado 2012 Ene 20];1(1). Disponible en: http://www.uzh.ch/keyinst/NewLORETA/TechnicalDetails/TechnicalDetails.pdf

  9. Matsuura K, Okabe Y. Selective minimum-norm solution of the biomagnetic inverse problem. Biomedical Engineering, IEEE Transactions [Internet]. 1995 [citado 2012 Ene 08];42(6). Disponible en: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=387200&url=http%3A%2F%2F ieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D387200

  10. Radaia M M, Rosenfeldb M, Abboud S. Effect of brain damage and source location on left–right asymmetry of visual evoked potentials in a realistic model of the head. Medical engineering & physics [Internet]. 2003 [citado 08 Ene 2012];25(5). Disponible en: http://www.sciencedirect.com/science/article/pii/S135045330300033X

  11. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage [Internet]. 2008 Feb [citado 20 Ene 2012];39(4). Disponible en: http://www.nrc-iol.org/mike%20pdfs/jafri_neuroimage_inpress.pdf

  12. Pilar CÁ. El desarrollo psicomotor y sus alteraciones. Manual práctico para evaluarlo y favorecerlo. Madrid: Editorial Pirámide; 1995.

  13. Tristán-Vega A, Aja-Fernández S. Design and construction of a realistic DWI phantom for filtering performance assessment. Medical Image Computing and Computer-Assisted Intervention–MICCAI [Internet]. 2009 [citado 03 Ene 2012];5761. Disponible en: http://link.springer.com/chapter/10.1007%2F978-3-642-04268- 3_117#page-1

  14. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Ming-Chang C, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage [Internet]. 2009 Jul [citado 20 Ene 2012];46(3). Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19195496

  15. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, et al. Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience [Internet]. 2008 Abr [citado 03 Ene 2012];28(14). Disponible en: http://www.jneurosci.org/content/28/14/3586.long

  16. Barragan B, Sandoval M, Sarmiento N. Relación del contexto de presentación con la actividad fisiológica, la actitud y la memoria del comercial en televisión. Suma Psicol [Internet]. 2008 [citado 08 Ene 2012];15(2). Disponible en: http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S0121- 43812008000200002&lng=pt&nrm=iso

  17. Hasan H, Hasan TF. Laugh yourself into a healthier person: a cross cultural analysis of the effects of varying levels of laughter on health. International Journal of Medical Sciences [Internet]. 2009 Jul [citado 03 Ene 2012];6(4). Disponible en: http://www.medsci.org/v06p0200.htm

  18. Kandel ER, Schwartz JH, Jessell TM. Principios en la neurociencia. 4ed. México: Mc Graw Hill; 2000.

  19. Jorge Almeida, Bradford Z Mahon, Alfonso Caramazza. The role of the dorsal visual processing stream in tool identification. Psychological Science [Internet]. 2010 Jun [citado 22 Dic 2012];21(6). Disponible en: http://dash.harvard.edu/bitstream/handle/1/5342184/Almeidaetalinpress_psychscienc e.pdf?sequence=1

  20. Mahon Bradford Z, Jens Schwarzbach, Alfonso Caramazza. The representation of tools in left parietal cortex is independent of visual experience. Psychological Science [Internet]. 2010 Jun [citado 2011 Dec 22];21(6). Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908275/




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista de Ciencias Médicas de la Habana. 2014;20