medigraphic.com
SPANISH

Medicentro

ISSN 1029-3043 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2015, Number 4

<< Back Next >>

Medicentro 2015; 19 (4)

Internal validation of a predictive model created through a new methodology applicable in primary health care

González FV, Alegret RM, González FY, Moreno AA
Full text How to cite this article

Language: Spanish
References: 20
Page: 218-224
PDF size: 169.49 Kb.


Key words:

index of orthodontic treatment need, predictive value of tests, primary health care.

ABSTRACT

Introduction: predictive models are support tools when it comes to decision making in public health. We should count on a specific form of internal validation, as a part of the development of these models, which allows us to quantify any optimism in their predictive performance. For this validation, the same group of study employed for its performance is used, and results are reproducible to the underlying population.
Objective: to validate an index of orthodontic treatment need, created by means of a methodology, that uses the values of Cramer's V of each predictor in order to build the multivariate model.
Methods: the model created with the training sample was applied to 181 students from a primary school of Santa Clara, and measures of discriminatory performance were calculated, such as, area under the receiver operating characteristic curve, as well as, parameters were calculated from the confusion matrices. Models obtained by means of the new method and the logistic regression were also compared.
Results: the new model exceeds logistic regression in all calculated parameters with values of sensitivity, specificity and validity of 79,3 %, 84,3 % and 81,2 %, respectively. Area under the curve was of 0,886.
Conclusions: these results support the obtained index through Cramer' V in order to be used in the underlying target population. The easiness of calculation and comprehension of this methodology are arguments in favor of its use for health decision -makers in primary care.


REFERENCES

  1. Pfeiffer RM. Extensions of criteria for evaluating risk prediction models for public health applications. Biostatistics. 2013;14(2):366-81.

  2. Collins G, Groot JA, Dutton S, Omar O, Shanyinde M, Tajar M, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol. 2014;14(40):1-11.

  3. Min Oh SM, Stefani K, Chang Kim H. Development and Application of Chronic Disease Risk Prediction Models. Yonsei Med J. 2014 Jul.;55(4):853-60.

  4. Steyerberg EW. Clinical prediction models: A practical approach to development, validation, and updating. New York: Springer; 2009.

  5. Collins GS, Reitsma JB, Altman DG, Moons K. GM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Ann Intern Med. 2015;162(1): 55-64.

  6. Moons K. GM, Pascal Kengne A, Woodward M, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart. 2012;98:683- 90.

  7. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925-31.

  8. González Ferrer V, Alegret Rodríguez M, González Ferrer Y, Vargas Yzquierdo J. Nueva estrategia metodológica para desarrollar índices predictivos en la atención primaria de salud y su impacto en la especialidad de Cardiología. CorSalud [internet]. 2015 ene.-mar. [citado 10 jul. 2015];7(1):[aprox. 1 p.]. Disponible en: http://www.corsalud.sld.cu/sumario/2015/v7n1a15/cartasv7n1.html#indicepredictivo

  9. Moreno Arias A. Validación de índice de necesidad y prioridad de tratamiento ortodóntico [tesis]. Villa Clara: Universidad de Ciencias Médicas; 2014.

  10. Cons N, Jenny J, Kohout F. DAI: The Dental Aesthetic Index. Iowa City, Iowa: University of Iowa, College of Dentistry; 1986.

  11. Águila FJ. Manual de Ortodoncia: teoría y práctica. Madrid: Editorial Aguiram; 1999.

  12. Altman DG, Vergouwe Y, Royston P, Moons GM. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:b605.

  13. Altman DG, Royston P. What do we mean by validating a prognostic model?. Stat Med; 2000;19:453-73.

  14. Padilla Centeno ML. Propuesta de un índice de maloclusiones y priorización de tratamiento ortodóntico [tesis]. Villa Clara: Universidad de Ciencias Médicas; 2012.

  15. Steyerberg EW. Prognostic modeling for clinical decision making. Theory and applications. Utrecht (The Netherlands): Elinkwijk BV; 1996.

  16. Sanchis J, Avanzas P, Bayes-Genis A, Pérez de Isla L, Heras M. Nuevos métodos estadísticos en la investigación cardiovascular. Rev Esp Cardiol. 2011;64(6):499-500.

  17. Rodríguez-Escudero JP, López-Jiménez F, Trejo-Gutiérrez JF. Cardiología "basada en la evidencia": aplicaciones prácticas de la epidemiología. IV. Modelos de predicción de riesgo cardiovascular. Arch Cardiol Méx [internet]. 2012 ene.-mar. [citado 10 ago. 2014];82(1):[aprox. 5 p.]. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405- 99402012000100011&lng=es

  18. Ioannidis JP, Khoury MJ. Improving validation practices in “Omics” research. Science. 2011;334:1230-2.

  19. Ioannidis JP, Greenland S, Hlatky MA, Khoury MJ, Macleod MR, Moher D, et al. Increasing value and reducing waste in research design, conduct, and analysis. Lancet. 2014;383:166-75.

  20. Ioannidis JP. Scientific inbreeding and same-team replication: type D personality as an example. J Psychosom Res. 2012;73:408-10.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Medicentro. 2015;19