medigraphic.com
SPANISH

Revista Mexicana de Ingeniería Biomédica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2014, Number 2

<< Back Next >>

Rev Mex Ing Biomed 2014; 35 (2)

Analysis of the Inverse Electroencephalographic Problem for Volumetric Dipolar Sources Using a Simplification

Oliveros-Oliveros JJ, Morín-Castillo MM, Aquino-Camacho FA, Fraguela-Collar A
Full text How to cite this article

Language: English
References: 15
Page: 115-124
PDF size: 516.70 Kb.


Key words:

inverse electroencephalographic problem, volumetric dipolar sources, Green function.

ABSTRACT

Objective: To analyze the parameter identification problem for volumetric dipolar sources in the brain from measurement of the EEG on the scalp using a simplification which reduces the multilayer conductive medium problem to one homogeneous medium problem with a null Neumann boundary condition.Methodology: The minimum squares technique is used for parameter identification of the dipolar sources. The simple case in which the head is modelled by concentric circles is developed. This case was chosen because we were able to obtain the solution of the forward problem in exact form and for the simplicity of the exposition. Results: The parameter of the dipolar sources can be identified from the EEG on the scalp using the simplification. For the theoretical analysis the results developed for one homogeneous region are used. The numerical implementation is simpler than the multilayer case and the numerical computation requires minor computational cost. Conclusion: The feasibility for solving the parameter identification problem using the simplification is shown. These results can be extended to the case of concentric spheres and complex geometries but the solution cannot be found in exact form.


REFERENCES

  1. Sarvas J. Basic Mathematical and Electromagnetic Concepts of the Biomagnetic Inverse Problem. Phys. Med. Biol., 1987; 32(1): 11-22.

  2. Nuñez PL. Electric Field of the Brain. Oxford Univ. Press, New York (USA), 1981.

  3. Fraguela A, Oliveros J and Morín M. Mathematical Models in EEG inverse, in: Jiménez Pozo MA, Bustamante J, Djorjevich S, Editors, Topics in the Theory of Approximation II (in Spanish). Scientific Texts, Autonomous University of Puebla (México), 2007; 73-95.

  4. Grave R, González S and Gómez CM. The biophysical foundations of the localization of encephalogram generators in the brain. The application of a distribution-type model to the localization of epileptic foci (in spanish). Rev. Neurol., 2004; 39: 748- 756.

  5. Fraguela A, Morín M. and Oliveros J. Inverse problem statement for locating the parameters of a neural current dipolar source (in spanish). Communications of Mexican Mathematical Society, 1999; 25: 41-55.

  6. Muravchik CH and Nehorai A. EEG/MEG Error bounds for a static dipole source with a realistic head model. IEEE Transactions on Signal Processing , 2001; 49(3): 470- 484.

  7. Sobolev SL. Partial Differential Equations of Mathematical Physics (in spanish). Addison-Wesley Publishing Company, Inc. (Moscú), 1964.

  8. Morín M, et al. Simplification of the inverse electroencephalographic problem to one homogeneous region with null Neumann (in Spanish). Revista Mexicana de Ingeniería Biomédica, 2013; 34(1): 41-51.

  9. Fraguela A, et al. Operational statement and analysis of the inverse electroencephalographic problem. Revista Mexicana de Física, 2001; 47(2):162-174.

  10. Fraguela A, Morín M. and Oliveros J. Inverse electroencephalography for volumetric sources. Mathematics and Computers in Simulation, 2008; 78: 481- 492.

  11. Oliveros J, Morín M, Conde J and Fraguela A. A regularization strategy for the inverse problem of identification of bioelectrical sources for the case of concentric spheres. Far East Journal of Applied Mathematics, 2013; 77: 1-20.

  12. Bustamante J, Castillo R and Fraguela A. A regularization method for polynomial approximation of functions from their approximate values at nodes. Journal of Numerical Mathematics, 2009; 17(2): 97- 118.

  13. Clerc M, Leblond J, Marmorat JP and Papadopoulo T. Source localization using rational approximation on plane sections. Inverse Problems, 2012; 28(5): 055018 (24pp).

  14. Tsitsas N and Martin P. Finding a source inside a sphere. Inverse Problems, 2012; 28: 015003 (11pp).

  15. Pursiainen S, Sorrentino A, Campi C and Piana M. Forward simulation and inverse dipole localization with the lowest order Raviart-Thomas elements for electroencephalography. Inverse Problems, 2011; 27: 045003 (17pp).




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Ing Biomed. 2014;35