medigraphic.com
SPANISH

Revista Mexicana de Ingeniería Biomédica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2013, Number 2

Next >>

Rev Mex Ing Biomed 2013; 34 (2)

Kinetic Energy of Emerging Neutrons Produced by Photodisintegration in a Medical Linear Accelerator

Reyes U, Sosa M, Bernal J, Córdova T, Mesa F
Full text How to cite this article

Language: English
References: 8
Page: 125-130
PDF size: 433.84 Kb.


Key words:

photoneutrons, kinetic energy, linear accelerator, photodisintegration.

ABSTRACT

When a gamma photon interacts with a target nucleus a nuclear reaction can be generated, producing as a consequence the expulsion of particles from the atomic nucleus, this process is called photodisintegration. For this work, are of interest nuclear reactions of photodisintegration in which neutrons are ejected due to the interaction of photons with atomic nuclei of different materials in a linear accelerator for medical use. In this paper, the kinetic energy of photoneutrons produced by interactions with atomic nuclei of 184W, 63Cu, 27Al and 12C, which are some of the materials that constitute the head of a medical linear accelerator, is calculated. Also, the nuclei present in the construction materials of the room and the maze of the accelerator, such as, 23Na, 40Ca and 28Si, as also in the human body, 2H, 14N and 16O, are considered. It derives an exact theoretical expression, which has a linear dependence of the energy of the produced neutrons relative to the incident photon energy. It is found that, in the majority of cases, just photons with energies above 10 MV contribute to the production of neutrons. The values calculated from the expression obtained in this work are in good agreement with those reported in the literature, that are obtained by other approaches.


REFERENCES

  1. Lin JP, Chu TC, Lin SY, Liu MT. “The measurement of photoneutrons in the vicinity of a Siemens Primus linear accelerator”. Applied Radiation Isotopes 2001; 55(3): 315-321.

  2. Kim HS, Park YH, Koo BC, Kwon JW, Lee JS, Choi HS. “Evaluation of the photoneutron field produced in a medical linear accelerator”. Radiation Protection Dosimetry 2007; 123(3): 323-328.

  3. Chin MPW. Neutron contamination in a radiotherapy maze. M.Sc. in Medical Physics Thesis. University of Surrey, China, 1999.

  4. Facure A, Falcao RC, Da Silva AX, Crispim VR, Vitorelli JC. “A study of neutron spectra from medical linear accelerators”. Applied Radiation Isotopes 2005; (62)1: 69-72.

  5. Ongaro C, Zanini A, Nastasi U, Ródenas J, Ottaviano G, Manfredotti C. “Analysis of photoneutron spectra produced in medical accelerators”. Phys. Med. Biol. 2000; (45)12: L55-L61.

  6. Barquero R, Mendez R, Vega-Carrillo HR, Iñiguez MP, Edwards TM. “Neutron spectra and dosimetric features around an 18 MV linac accelerator”. Health Phys. 2005; 88(1): 48-58.

  7. d’Errico F, Nath R, Tana L, Curzio G, Alberts WG. “In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator”. Med. Phys. 1998; 25(9): 1717-1724.

  8. Facure A, Falcao RC, Da Silva AX, Crispim VR. “Neutron dose rate evaluation for medical linear accelerators”. Radiation Protection Dosimetry 2004; 111(1): 101- 103.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Ing Biomed. 2013;34