medigraphic.com
SPANISH

Revista Mexicana de Ingeniería Biomédica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2012, Number 2

Next >>

Rev Mex Ing Biomed 2012; 33 (2)

Differentiation BIRADS I vs II by Magnetic Induction Spectroscopy: A Potential Innovative Method to Detect Neoplasies in Breast

González-Díaz CA, Uscanga-Carmona MC, Ibarra-Martínez CD, Jiménez-Fernández ME, Lozano-Trenado LM, Silva-Escobedo JG, Polo-Soto SM
Full text How to cite this article

Language: Spanish
References: 21
Page: 65-76
PDF size: 625.79 Kb.


Key words:

BIRADS, breast, cancer, magnetic, induction, spectroscopy.

ABSTRACT

Introduction: Current limitations in the treatment of Breast Cancer (BC) are associated with late diagnosis of the disease. At present, there is no portable technology that allows a noninvasive diagnosis of early stage tumors in mammary gland. The electrical bioimpedance of neoplastic tissue is di erentiable with respect to normal tissue. We have proposed bioimpedance measurements by Magnetic Induction Spectroscopy (MIS) as a noninvasive alternative to detect neoplasia in mammary gland.
Objective: To explore the feasibility of detecting neoplasia in mammary gland through MIS and to determine whether this technique allows the discrimination of BIRADS mammographic ndings I vs II.
Material and Methods: Voluntary women with mammographic ndings BIRADS I and II were monitored with an experimental portable inductive spectrometer to evaluate the in uence of MIS in breast tissue in the bandwidth of 0.001 to 100 MHz. MIS measurements, body temperature and antroprometric values were compared by a parametric statistical test.
Results: Small di erences in the inductive phase shift at frequencies below 100 kHz are evident between BIRADS groups. A mean value comparison of inductive phase shift at each frequency through a tstudent test for independent samples showed statistically signi cant di erences only at the frequency of 1.81 kHz.
Discussion and Conclusion: MIS measurements in breast tissue through the dielectric dispersion range below 100 kHz show technical feasibility to di erentiate mamogra cal ndings BIRADS I and II. Possible e ects associated to temperature or instrumentation artifacts may confuse the MIS measurements. Extensive clinical studies of sensitivity and speci city to detect neoplasia in mammary gland are required to con rm the ndings so far observed.


REFERENCES

  1. Stagg J, Johnstone RW, Smyth MJ. From cancer immunosurveillance to cancer immunotherapy". Immunological Reviews 2007; 220: 82-101.

  2. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy". Nature Review of Immunology. 8, Jan 2008: 59-73.

  3. Gomez Dantes Hector, Lewis Sarah, Torres Sanchez Luisa y Lopez Carrillo Lizbeth. El cancer de mama en America Latina y el Caribe: Morbilidad, mortalidad y carga de la enfermedad. Tomatelo a pecho, Fundacion Mexicana para la Salud A.C." Version preliminar 1. Enero, 2009. www.tomateloapecho.org.mx (ultima visita Junio 2012).

  4. Morris E.A. Review of Breast MRI: Indications and limitations. Semin Roentgenol. 2001; 36: 226-2237.

  5. Norma O cial Mexicana NOM-041-SSA2- 2002, Para la prevencion, diagnostico, tratamiento, control y vigilancia epidemiologica del cancer de mama.

  6. Grimnes S and Martinsen O. G. Bioimpedance and Bioelectricity (Chapter 4). 2008. 2a. Ed. Academic Press.

  7. H. Scharfetter, W. Ninaus, B. Puswald, G. I. Petrova, D. Kovachev and H. Hutten. Inductively Coupled Wideband Transceiver for Bioimpedance Spectroscopy (IBIS)". Annals of the New York Academy of Sciences 873: 322-334, (1999).

  8. J. C. Newell, P. M. Edic, X. Ren, J. L. Larson-Wisemanand M.D. Danyleiko. Assessment of acute pulmonary edema in dogs by electrical impedance imaging." IEEE Transactions on Biomedical Engineering 43(2): 133-8, 1996.

  9. D. S. Holder, C. A. Gonzalez-Correa, T. Tidswell, A. Gibson, G. Gusick and R. H. Bayford. Assessment and Calibration of a Low-Frequency System for Electrical Impedance Tomography (EIT), Optimized for Use in Imaging Brain Function in Ambulant Human Subjects". Annals of the New York Academy of Sciences 1999; 873: 512-519.

  10. Griths H, WR Steward, et al. Magnetic induction tomography - A measuring system for biological materials". Annals of the New York Academy of Sciences 1999; 873: 335-345.

  11. Griths, H. Magnetic Induction tomography. Measurement Science and Technology 2001; 12: 1126-31.

  12. Al-Zeiback S and Saunders NH. A feasibility study of in vivo electromagnetic imaging. Physics in Medicine and Biology 1993; 38: 151-160

  13. Korzhenevskii, A., V., and V. Cherepenin, A. Magnetic induction tomography". Journal of Communications Technology and Electronics 1997; 42(4): 469-474.

  14. Korjenevsky, A., V., and V. Cherepenin, A. Progress in Realization of Magnetic Induction Tomography". Annals of the New York Academy of Sciences 1999; 873: 346-352.

  15. Burdette E.C. Electromagnetic and Acoustic Properties of Tissues. In Pyisical Aspects of Hyperthermia", G.H. Nussbaum (ed), AAPM Medical Physics Monographs 1982; 8: 105-150.

  16. Martnez AC, Silva JG, Fuentes RQ y Gonzalez CA, Evaluacion de Espectrometro Inductivo Prototipo a traves de Fantomas de Agar que Emulan Condiciones Relativas de Cancer de Mama". XXXIV Congreso Nacional de Ingeniera Biomedica. Ixtapa Zihuatanejo. Octubre 2011.

  17. Gonzalez C A, Silva J G, Lozano L M and Polo S M. Simulation of multifrecuency induced currents in biophysical models and agar phantoms of breast cancer". Journal of Electromagnetic Analysis and Applications 2012; 4(8): 317-325.

  18. Bong Seok Kim et al. A method for analyzing electrical impedance spectroscopy data from breast cancer patients". Physiological Measurement 2007; 28: S237.

  19. Cornish BH, Thomas BJ, Ward LC. E ect of temperature and sweating on bioimpedance measurements". Applied Radiation and Isotopes 1998; 49(5-6):475- 6.

  20. Guillen-Hernandez G A, Ruz-Aviles A, Losano-Trenado L M, Silva-Escobedo J G, Polo-Soto S M y Gonzalez-Daz C A. In uencia de Factores asociados a Termografa Tisular dependientes del Ciclo Menstrual en Mediciones de Espectroscopa de Induccion Magnetica en Glandula Mamaria Sana". Memorias del XXXV Congreso Nacional de Ingeniera Biomedica. San Luis Potos, Mexico 4-6 de Octubre del 2012, pp 25-28.

  21. Romo-Cordero M X, Reyes-Alducin O, Flores-Rangel P D, Losano-Trenado L M, Silva-Escobedo J G, Polo-Soto S M y Gonzalez-Daz C A. In uencia de Factores asociados al Volumen de Mama dependientes del Ciclo Menstrual en Mediciones de Espectroscopa de Induccion Magnetica". Memorias del XXXV Congreso Nacional de Ingeniera Biomedica. San Luis Potos, Mexico 4-6 de Octubre del 2012, pp 29-32.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Ing Biomed. 2012;33