medigraphic.com
SPANISH

Revista Mexicana de Ingeniería Biomédica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2012, Number 2

<< Back Next >>

Rev Mex Ing Biomed 2012; 33 (2)

Glow Discharge Plasma Modified Surfaces for Hepatic Co-culture Models

Ramírez-Fernández O, Godínez R, Morales J, Gómez-Quiroz L , Gutiérrez-Ruiz MC, Zúñiga-Aguilar E, Olayo R
Full text How to cite this article

Language: Spanish
References: 20
Page: 127-135
PDF size: 434.18 Kb.


Key words:

polypyrrole, hepatocytes, stellate cells, hepatic model, cell culture, bioarti cial liver.

ABSTRACT

The aim of the development of Bioarti cial livers (BAL) is to create biological models that imitate the liver function. In recent years improvements in these models have been obtained by using cocultures of structured and parenquimal cells. The cell adhesion is fundamental to generate a cell culture, for this reason, we used biocompatible materials or biocompatible polymers synthesized by plasma discharge.
In this work we used a polypyrrole doped with iodine (Ppy-I) cell culture surface, synthesized by plasma glow discharge to cultivate hepatocytes of the cell line HepG2 with immortalized stellate or Ito cells. These cocultures were compared to a standard surface cell culture. We analyzed the morphology and cell proliferation during 9 culture days. Also, we analyzed the whole supernatant protein secreted, the results show an increase in the secreted protein when we used the Ppy-I in comparison to the standard surface, we obtained maximums of 8 µg/ml and 6 µg/ml respectively. We didn't observed morphological di erences between the Ppy-I surface and the standard surface. We conclude that the hepatic cell cocultures on a Ppy-I surface, stimulates the hepatic secreted protein. These results can be used to improve the performance of BAL.


REFERENCES

  1. Geetha M., Singh A.K., Asokamani R., Gogia A.K. (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants - A review " Progress in Materials Science 54(3), 397-425.

  2. Lanza R.P., Langer R., Vacanti J. (2000) Principles of tissue engineering." Ed. Academic Press.

  3. Du Y, Han R, Wen F, Ng San San S, Xia L, Wohland T, Leo HL, Yu H. (2008) Synthetic sandwich culture of 3D hepatocyte monolayer". Biomaterials. 29(3): 290-301.

  4. Cordero J. (2009) Biomateriales, actualizaciones en ciruga ortopedica y traumatologa".3a Ed., Masson.

  5. Moosvi S. R., Day R.M. (2009) Bioactive glass modulation of intestinal epithelial cell restitution" Acta Biomaterialia 5: 76-83.

  6. Ishii Y., Saito R., Marushima H., Ito R., Sakamoto T., Yanaga K., (2008) Hepatic reconstruction from fetal porcine liver cells using a radial ow bioreactor", World J Gastroenterology 14(17): 2740-2747.

  7. Shoufeng Y., Kah-Fai L., Zhaohui D., Chee-Kai C. (2001) The design of sca olds for use in tissue engineering. Part I. Traditional factors" Tissue Engineering 7(6): 679-689.

  8. Cruz G., Mondragon-Lozano R., Diaz- Ruiz a., Manjarrez J., Olayo R, Salgado- Ceballos H., Olayo M.G., Morales J., Alvarez-Meja L., Morales A., Mendez- Armenta M., Plascencia N., Ros C. (2012) Plasma polypyrrole implants recover motor function in rats after spinal cord transection." Journal of Materials Science: Materials in Medicine. 23(10): 2583-2592.

  9. Hamazaki, K., Doi, Y., and Koide, N. (2002) Microencapsulated multicellular spheroid of rat hepatocytes transplanted intraperitoneally after 90% hepatectomy." Hepatogastroenterology, 49: 1514-1516.

  10. Dvir-Ginzberg, M., Gamlieli-Bonshtein, I., Agbaria, R., and Cohen, S. (2003) Liver tissue engineering within alginate sca olds: e ects of cell-seeding density on hepatocyte viability, morphology, and function." Tissue Engineering 9: 757-766

  11. Morales Corona J., Perez Tejada E., Montiel Campos R., Vazquez Torres H., Olayo R., Gomez Quiroz L. E., Gutierrez Ruiz M.C., Olayo Gonzalez M. G., Cruz Cruz G. J. (2008) Modi cacion super cial por plasma aplicada a biomateriales." La Fsica Biologica en Mexico: Temas Selectos 2, Cap. 8, 195-205. Editado por el Colegio Nacional.

  12. Biederman, H., Slavinska, D. (2000) Plasma polymer lms and their future prospects" Surface and Coatings Technology 125(1-3): 371- 376

  13. Zhang Z., Roy R., Dugre F. J., Tessier D. Dao L. H. (2001) In vitro biocompatibility study of electrically conductive polypyrrole-coated polyester fabrics." Journal of Biomedical Materials Research Part A 57(1): 63-71.

  14. Jiang X., Tessier D., Dao L. H. Zhang Z. (2002) Biostability of electrically conductive polyester fabrics: an in vitro study." Journal of Biomedical Materials Research Part A 62(4): 507-513.

  15. Shi G., Rouabhia M., Wang Z., Dao L. H. And Zhang Z. (2004) A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide" Biomaterials 25(13): 2477- 2488.

  16. Wang J., Neoh K. G., Kang E. T., (2004) Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin lms" Thin Solid Films 446: 205-217

  17. Olayo R., Ros C., Salgado-Ceballos H., Cruz G. J., Morales J., Olayo M. G., Alvarez A. L., Lozano R., Morales J. C., Daz-Ruiz A. (2008) Tissue spinal cord response in rats after implants of polypyrrole and polyethylene glycol obtained by plasma" Journal of Materials Science-Materials in Medicine 19 (2): 817- 826.

  18. Morelli S., Salerno S., Piscioneri A., Campana C., Drioli E. and De Bartolo L. (2010) Membrane bioreactors for regenerative medicine: an example of the bioarti cial liver" Asia-Paci c Journal of Chemical Engineering 5: 146-159

  19. Allen, J. W., Hassanein, T. and Bhatia, S. N. (2001) Advances in bioarti cial liver devices", Hepatology 34(3): 447-454

  20. Strain, A. J. and Neuberger, J. M. (2002) A bioarti cial liver{state of the art", Science 295(5557):1005-1009.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Ing Biomed. 2012;33