medigraphic.com
SPANISH

Revista Mexicana de Ingeniería Biomédica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 1

<< Back Next >>

Rev Mex Ing Biomed 2016; 37 (1)

Designing a Low Cost Electrospinning Device for Practical Learning in a Bioengineering Biomaterials Course

Velasco BRD, Álvarez SAS, Villarreal GLJ, Paz GJA, Iglesias AL, Vera GR
Full text How to cite this article

Language: English
References: 17
Page: 7-16
PDF size: 1126.98 Kb.


Key words:

biomaterials, bioengineering, electrospinning, SOLIDWORKS models, nanofibers.

ABSTRACT

The electrospinning device is used in the biomaterials research field nowadays for fabricating nanofibers that can be used for manufacturing artificial skin and muscular tissue, blood vessels (vascular grafts), orthopedic components (bones, cartilages, and ligaments/tendon), and peripheral or central nervous system components. Electrospun nanofibers act as ideal scaffolds for tissue engineering and drug delivery systems because they can mimic the functions of native extracellular matrices. A low cost electrospinning device was designed and built for undergraduate practical learning in the Biomaterials course in the area of Bioengineering at Universidad Autónoma de Baja California, México. The methodology includes 3D CAD designing, manufacturing of the acrylic cabinet, different collectors and the fabrication of poly (vinyl alcohol) nanofibrous scaffolds, in order to validate the functionality of the electrospinning system. The prototype is an affordable device; its cost is 95% less than the laboratory commercial devices.


REFERENCES

  1. McCallus R. The Effects of Bioengineering on the Medical World. https://infogr.am/Bioengineering-in- Medicine-mccallusrs_1365786946.

  2. Tirrell DA. Biomaterials: Important Areas for Future Investment. National Science Foundation Workshop. 2012.

  3. Malshe H, Malshe AP, Jiang W. “Design, Fabrication and Testing of an Electrospinning Apparatus for the Deposition of PMMA Polymer for Future Biomedical Applications”. Inquiry, vol. 12, pp. 70-76, 2011.

  4. Vonch J, Yarin A, Megaridis, C.M. “Electrospinning: A study in the formation of nanofibers”. J Undergrad Res, vol. 1, pp. 1-6. 2007.

  5. Taylor G. “Disintegration of water drops in an electric field”. Proceedings of the Royal society of London series A, Mathematical and Physical, vol. 280 (1382): pp. 383-397, 1964.

  6. Ramakrishna S, Fujihara Teo WE, Lim TC, Ma Z. “An Introduction to electrospinning and nanofibers. Electrospinning and Nanofibers”. National University of Singapore. World scientific Publishing co. Pte. Ltd. ISBN: 978-981-256-415-3. 2005.

  7. Xie J, Xia Y. “Electrospinning: An Enabling Technique for Nanostructured Materials”. Mater Matters, vol. 3, no. 1, pp. 19. 2008.

  8. Abdullah Aslamaci NanoFMG http://www.nanofmg.com

  9. (a) Gómez-Pachón EY, Montiel- Campos R, Moreno-Rondón EV, Vera- Graziano R. “Diseño de un equipo de Electrospinning para la Fabricación de Andamios de Nanofibras para Aplicaciones Biomédicas”. Memorias del XVI Congreso Internacional Anual de la SOMIM. Monterrey, Nuevo León, México. ISBN: 978-607-95309-3-8. 2010. (b) Gómez-Pachón EY, Sánchez- Arévalo FM, Sabina FJ, Maciel-Cerda A, Montiel-Campos R, Batina N, Morales-Reyes I, Vera-Graziano R. “Characterization and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds”. J Mater Sci, vol. 48, pp. 8308, 2013.

  10. Sajeev US, Anand KA, Menon D, Nair S. “Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning”. Bulletin Mater Sci, vol. 31, pp. 343-351. 2010.

  11. Vera-Graziano R, Maciel-Cerda A, Moreno-Rondon EV, Ospina A, Gomez- Pachon EY. Mater Res Soc Symp Proceed, pp. 1373, 2012.

  12. (a) Villarreal-Gómez LJ, Vera-Graziano R, Vega-Ríos MR, Pineda-Camacho JL, Almanza-Reyes H, Mier-Maldonado PA, Cornejo-Bravo JM. “Biocompatibility evaluation of electrospun scaffolds of poly (L-Lactide) with pure and grafted hydroxyapatite”. J Mex Chem Soc, vol. 10, no. 584, pp. 435-443, 2014. (b) Villarreal-Gómez LJ, Vera-Graziano R, Vega-Ríos MR, Pineda-Camacho JL, Almanza-Reyes H, Mier-Maldonado PA, Cornejo-Bravo JM. ” In vivo biocompatibility of dental scaffolds for tissue regeneration”. Adv Mater Res, vol. 3, pp. 191-195. 2014.

  13. Subia B, Kundu J, Kundu SC. “Biomaterial scaffold fabrication techniques for potential tissue engineering applications”. Tissue Engineering INTECH. Chapter 7, pp. 141-157, 2010.

  14. Lu T, Li Y, Chen T. “Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering”. Int J Nanomed, vol. 8, pp. 337-350, 2013.

  15. Zhao J, Han W, Chen H, Tua M, Zenga R, Shic Y, Chab Z, Zhou C. “Preparation, structure and crystallinity of chitosan nanofibers by a solid-liquid phase separation technique”. Carbohydr Polym. Vol. 83, pp. 1541- 1546. 2011.

  16. Ma PX. “Biomimetic materials for tissue engineering”. Adv Drug Deliv Rev., vol. 60, pp. 184-98, 2008.

  17. Ikada Y. Scope of tissue engineering In: Tissue Engineering: Fundamental and Applications, Ikada Y. (Ed.). PP 29, Academic press, USA. 2006.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Ing Biomed. 2016;37