medigraphic.com
SPANISH

Revista Cubana de Investigaciones Biomédicas

ISSN 1561-3011 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2015, Number 3

<< Back Next >>

Rev Cubana Invest Bioméd 2015; 34 (3)

Algorithm for prediction of strains in human tibia by means of artificial intelligence techniques

Cisneros HYA, González CRA, Ortiz PA, Jacobo AVH
Full text How to cite this article

Language: Spanish
References: 12
Page: 237-244
PDF size: 171.47 Kb.


Key words:

finite element method, artificial neuronal networks, tibia.

ABSTRACT

Introduction: the development of information sciences and their influence in a significant way the scientific and technological advances in the field of health care. The simulation of real-life problems through neuronal networks intrinsically relates medicine and informatics since these networks use models based on human neuron functioning. If we add to this potent tool a numerical calculation method that allows the neuronal network to serve as a data source, then tissues and parts of the body could be modeled. One of the branches with more implementation in this regard could be orthopedics due to the similarities of the human body and its osseous structures with the properties of the engineering materials and this is a key area in the application of finite element method.
Objective: to create an algorithm that may solve the problems of osseous remodeling of a human tibia under different mechanical load values.
Methods: the Finite Element Method was used together with the professional software ABAQUS/CAE for estimation of strains and deformations and a neuronal network to process the obtained values. The neuronal network was set and then the software MATLAB R2013a was applied.
Results: a neuronal network model that makes it possible to predict the loads that certain area of the tibia may stand.
Conclusions: through the artificial intelligence techniques and the use of the finite element method, it was possible to obtain a model that predicts the strain magnitude that may be supported by a human tibia area depending on the osseous density values present in this area.


REFERENCES

  1. González Carbonell RA, Álvarez García E, Moya Rodríguez J. Tacón de Torque para uso Ortopédico: Propuesta de un Nuevo Diseño. V Latin American Congress on Biomedical Engineering CLAIB 2011. IFMBE Proceedings 33. La Habana: Springer; 2013. p. 912-5.

  2. Cisneros Hidalgo YA, González Carbonell RA, Puente Álvarez A, Camue Corona E, Oropesa Rodríguez YE. Aplicación de los modelos mecanobiológicos en los procesos de regeneración ósea. Rev Cub Ortop Traumatol. 2014 [citado 10 Dic 2014];28(2):214- 22. Disponible en: http://bvs.sld.cu/revistas/ibi/vol33_3_14/ibi07314.htm

  3. Calderín Pérez B, González Carbonell RA, Landín Sorí M, Nápoles Padrón E. Aplicabilidad de la simulación computacional en la biomecánica del disco óptico. Rev Arch Med Camagüey. 2015;19(1):73-82.

  4. Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB, Guedes JM. Numerical modeling of bone tissue adaptation—A hierarchical approach for bone apparent density and trabecular structure. Journal of Biomechanics. 2009;42(7):830-7.

  5. Carretta R, Lorenzetti S, Müller R. Towards patient-specific material modeling of trabecular bone post-yield behavior. International Journal for Numerical Methods in Biomedical Engineering [Internet]. 2013;29(2):250-72. Disponible en: http://dx.doi.org/10.1002/cnm.2516

  6. Garijo N, Martínez J, García-Aznar JM, Pérez MA. Computational evaluation of different numerical tools for the prediction of proximal femur loads from bone morphology. Computer Methods in Applied Mechanics and Engineering. 2014 [citado 5 feb 2015];268(0):437-50. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0045782513002570

  7. Kashid S, Kumar S. Prediction of Life of Die Block Using Artificial Neural Network. Applied Mechanics & Materials. 4 de agosto de 2014 [citado 13 ene 2015];(592- 594):689-93. Recuperado de: http://search.ebscohost.com/login.aspx?direct=true&db=aci&AN=99680438&site=eh ost-live

  8. Cisneros Hidalgo YA, González Carbonell RA, Ortiz Prado A, Jacobo-Armendáriz VH, Puente Álvarez A. Modelo mecanobiológico de una tibia humana para determinar su respuesta ante estímulos mecánicos externos. Rev Cub Inv Bioméd. 2015 [citado abri 2015];34(1):6.

  9. Hazrati Marangalou J, Ito K, Van Rietbergen B. A new approach to determine the accuracy of morphology–elasticity relationships in continuum FE analyses of human proximal femur. Journal of Biomechanics. 2012;45:2884-92.

  10. Nagel T, Kelly D. Computational Mechanobiology in Cartilage and Bone Tissue Engineering: From Cell Phenotype to Tissue Structure. En: Geris L, editor. Computational Modeling in Tissue Engineering [Internet]. Springer Berlin Heidelberg; 2013. p. 341-77.

  11. González Carbonell RA, Ortiz Prado A, Cisneros Hidalgo YA, Alpízar Aguirre A. Bone remodeling simulation of subject-specific model of tibia under torque. En: Braidot A, Hadad A, editores [internet]. 2015 [citado 1 Ene 2015]. p. 446-9. Recuperado de: http://www.springer.com/engineering/biomedical+engineering/book/978-3-319- 13116-0

  12. Cisneros Hidalgo YA, González Carbonell RA, Puente Álvarez A, Camue Corona E, Oropesa Rodríguez Y. Generación de imágenes tridimensionales: integración de tomografía computarizada y método de los elementos finitos. 2014 [citado 5 Ene 2015];33(3). Recuperado de: http://bvs.sld.cu/revistas/ibi/vol33314/ibi07314.htm




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Invest Bioméd. 2015;34