medigraphic.com
SPANISH

Salud Mental

ISSN 0185-3325 (Print)
Órgano Oficial del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 1

<< Back Next >>

Salud Mental 2016; 39 (1)

Evolución de la potencia absoluta, relativa e índices de ritmos electroencefalográficos en estudiantes de primaria, licenciatura y maestría

Brust-Carmona H, Galicia-Alvarado M, Belmont AJ, Sánchez QA, Cantillo-Negrete J, Yáñez SO
Full text How to cite this article

Language: Spanish
References: 40
Page: 25-35
PDF size: 1242.05 Kb.


Key words:

qEEG power spectrum, qEEG indicators, alpha and beta 1, delta and theta index over alpha.

ABSTRACT

Antecedents Cerebral function results from the electrical activity in glial-neuronal networks, integrated proactively through sensory, motor, and regulating interactions. These networks oscillate since early life and are modulated by diverse maturation factors, including educational processes.
Objective To identify the power spectrum separated in delta (ᵹ), theta (θ), alpha 1 (α1), alpha 2 (α2), beta 1 (β1), beta 2 (β2), and their topography in cerebral hemispheres of children, youngsters, and adults to establish qEEG indicators.
Method We studied three groups of 16 participants each: elementary school children (CG), undergraduate students (UG), and graduate students (GG). Parents and participants granted their consent. The EEG was recorded (Nicolet) following the 10/20 system. Bipolar samples were analyzed. Absolute power (AP) was obtained with Fourier transform; its average (AAP) relative power (RP), and slow/fast frequencies and indices were calculated. Differences were assessed with Kruskal Wallis and Dunnet’s comparison for subgroups.
Results The AAP of six frequencies was higher in CG than in UG and GG. Frequencies were similar with exceptions correlating with topographic distribution. The δ/α index was higher in CG with a particular topographic distribution, θ/α varied more. RP of α was higher in UG and GG than in CG; that of θ and ᵹ were higher in some leads of CG.
Discussion and conclusion During cerebral maturation, AP diminishes due to integration of more glial-neuronal ensembles, presenting greater asymmetry in a giving frequency. These profiles establish indicators for comparison with future EEG recordings.


REFERENCES

  1. Mountcastle VB. The columnar organization of the neocortex. Brain 1997;120:701-722.

  2. Barry RJ, Clarke AR, Johnstone SJ, Magee CA et al. EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiol 2007;118:2765-2773.

  3. Ben-Simon E, Podlipsky I, Arieli A, Zhdanov A et al. Never resting brain: simultaneous representation of two alpha related processes in humans. PloS One 2008;3:e3984.

  4. Poskanzer KE, Yuste R. Astrocytic regulation of cortical UP states. PNAS 2011;108:18453-18458.

  5. Van Dijk H, Schoffelen JM, Oostenveld R, Jensen O. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 2008;28:1816-1823.

  6. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration Nat Rev Neurosci 2001;2:229-239.

  7. Sporns O. From complex networks to intelligent systems. En: Creating brain like intelligence. Sendhoff B, Körner E, Sporns O, Ritter H, Doya K (eds.). Berlin, Heidelberg: Springer Verlag; 2008.

  8. Thatcher RW, Lubar JF. History of the scientific standards of QEEG normative databases. En: Budzinsky T, Budzinski H, Evans J, Abarbanel A (eds.). Introduction to QEEG and neurofeedback: Advanced theory and applications. San Diego, CA: Academic Press; 2008.

  9. Başar E, Güntekin B. A short review of alpha activity in cognitive processes and in cognitive impairment. Int J Psychophysiol 2012;86:25–38.

  10. Kopell N, Kramer MA, Malerba P, Whittington MA. Are different rhythms good for different functions? Front Hum Neurosci 2010;4:187. doi:10.3389/fnhum.2010.00187.

  11. Tononi J. An information integration theory of consciousness. BMC Neurosci 2004;5:42-64.

  12. Buzsáki G. Rhythms of the brain. Oxford: University Press; 2006.

  13. Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005;6:877–888.

  14. Taylor AG, Goehler LE, Galper DI, Innes KE et al. Top-down and bottom-up mechanisms in mind-body medicine: development of an integrative framework for psychophysiological research. Explore (NY) 2010;6:29-41.

  15. Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2001;2:704-716.

  16. Başar E. A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int J Psychophysiol 2012;86:1-24.

  17. Accolla EA, Kaplan PW, Maeder-Ingvar M, Jukopila S et al. Clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Clin Neurophysiol 2011;122:27-31.

  18. Knyazev GG. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 2012;36:677-695.

  19. Sokolova LS, Machinskaia RI. Formation of the functional organization of the cerebral cortex at rest in young schoolchildren varying in the maturity of cerebral regulatory systems: I. Analysis of EEG spectral characteristics in the state of rest. Human Physiology 2006;32(5):499–508.

  20. Catani M, Ffytche DH. The rises and falls of disconnection syndromes. Brain 2005;128:2224–2239.

  21. Fingelkurts AA, Fingelkurts AA. Persistent operational synchrony within brain default-mode network and self-processing operations in healthy subjects. Brain Cogn 2011;75:79-90. doi: 10.1016/j.bandc. 2010.11.015.

  22. Palva S, Palva JM. New vistas for α-frequency band oscillations. 2007;30:150-158.

  23. Steriade, M. Cellular substrates of brain rhythms. En: Niedermeyer E, Lopes da Silva FH (eds.). Electroencephalography: Basic principles, clinical applications, and related fields. Philadelphia: Williams & Wilkins; Cuarta edición; 1998.

  24. Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010;90:1195–1268.

  25. Buxhoeveden DP, Casanova MF. The minicolumn hypothesis in neuroscience. Brain 2001;125:935-951.

  26. Lopes da Silva F. Principles of neural coding from EEG signals. En: Quiroga R, Panzeri S (eds.). Principles of neural coding. Boca Raton, FL: Taylor & Francis Group: CRC Press; 2013.

  27. Steriade M. Cellular substrates of brain rhythms. En: Niedermeyer E, Lopes da Silva F (eds.). Electroencephalography basic principles, clinical applications, and related fields. Philadelphia: Cuarta edición; Lippincott Williams & Wilkins; 1998.

  28. Llinás RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol 2006;95:3297-3308.

  29. Jang JW, An S, Sun JJ, Reyes-Puerta V et al. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. Cereb Cortex 2013;23:1299–1316.

  30. Rektor I, Kuba R, Brázdil M. Interictal and ictal EEG activity in the basal ganglia: an SEEG study in patients with temporal lobe epilepsy. Epilepsia 2002;43:253-262.

  31. Rosanova M, Casali A, Bellina V, Resta F et al. Natural frequencies of human corticothalamic circuits. J Neurosci 2009;29:7679-7685; doi: 10.1523/JNEUROSCI.0445-09.2009.

  32. Grossberg S. How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spat Vis 1999;12:163-185.

  33. Lopes da Silva F. Neural mechanisms underlying brain waves: from neural membranes to networks, Electroencephalogr Clin Neurophysiol 1991;79:81-93.

  34. Schroeder CE, Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 2009;32:9–18; doi: 10.1016/j.tins.2008.09.012.

  35. Machinskaia RI, Sokolova LS, Krupskaia EV. Formation of the functional organization of the cerebral cortex at Rest in young schoolchildren varying in the maturity of cerebral regulatory systems: II. Analysis of EEG a -Rhythm Coherence. Human Physiology 2007;33:129–138.

  36. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence Trends Cogn Sci 2005;9:474-480.

  37. Quian Quiroga R, Panzeri S. Principles of neural coding. CRC Press: Taylor 6 Francis Group; 2013.

  38. Raichle ME. Two views of brain function. Trends Cog Sci 2010;14:180- 190.

  39. Timofeev I, Bazhenov M, Seigneur J, Sejnowski T. Neuronal synchronization and thalamocortical rhythms in sleep, wake and epilepsy. En: Noebels JL, Avoli M, Rogawski MA et al. (eds.). Jasper’s Basic mechanisms of the epilepsies. Bethesda, MD: NCBI; 2012.

  40. Xu P, Huang R, Wang J, Van Dam NT et al. Different topological organization of human brain functional networks with eyes open versus eyes closed. NeuroImage 2014;90:246-255.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Salud Mental. 2016;39