medigraphic.com
SPANISH

Revista ADM Órgano Oficial de la Asociación Dental Mexicana

ISSN 0001-0944 (Print)
Órgano Oficial de la Asociación Dental Mexicana
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 3

<< Back Next >>

Rev ADM 2016; 73 (3)

In-vitro fracture strength of ceramic inlays, using two types of cavity bases

Ramírez LMP, Méndez MR, Cornejo PMA, Llamas OFJ, Escalante BSA
Full text How to cite this article

Language: Spanish
References: 22
Page: 139-143
PDF size: 276.60 Kb.


Key words:

Fracture strength, ceramic inlays, glass ionomer, composite resin.

ABSTRACT

Introduction: Cavity bases are used in restorative dentistry and there are various materials recommended as the base for ceramic inlays. Objective: To compare the in-vitro fracture strength of a ceramic material (lithium disilicate) when used as a restorative material with different types of cavity bases in ceramic inlays in premolars. Material and methods: Standardized cavities were prepared for MOD ceramic inlays in 30 premolars. Three groups were randomly assigned (n = 10) as follows: group 1 - no base; group 2 - resin-reinforced glass-ionomer cement (Vitrebond TM, 3M); and group 3 - composite resin (Filtek TM Z350 XT, 3M). The inlays were made of lithium disilicate (IPS e.max®, Ivoclar Vivadent), bonded using a resin agent (Rely X TM, 3M), and stored in bidistilled water at 37 oC for 24 hours. Fracture strength was measured using a universal mechanical testing machine (MTS® Alliance RT/30) at a speed of 0.5 mm/min. The fractured samples were examined under stereoscopic microscopy to identify the mode of failure. The data were analyzed by means of one-way ANOVA and post hoc comparisons were made using the Scheffé test (IBM SPSS STATISTICS 21.0 software). Results: The control group (i.e., no base) produced the highest mean (105.16 Kgf ± 11.41), which was statistically significant compared to group 2 (77.04 ± 19.69). The mean for group 3 (94.81 ± 10.65) was statistically different from that of group 2 (p = .001). The most common mode of failure was type IV (60%). Conclusions: The fracture strength of lithium disilicate ceramic inlays is greater in cavities with no cavity base.


REFERENCES

  1. Carrillo SC. Revisión de los principios de preparación de cavidades. Extensión por prevención o prevención de la extensión. Revista ADM. 2008; 65 (5): 263-271.

  2. Koushyar KJ. Recomendaciones para la selección del material cerámico libre de metal, de acuerdo a la ubicación de la restauración en la arcada. Int J Odontostomatol. 2010; 4: 237-240.

  3. Magne P, Schlichting LH, Paranhos MP. Risk of onlay fracture during pre-cementation functional occlusal tapping. Dent Mater. 2011; 27 (9): 942-947.

  4. Bergman MA. The clinical performance of ceramic inlays. Aust Dent J. 1999; 44: 157-168.

  5. Esquivel-Upshaw JF, Anusavice KJ, Yang MC, Lee RB. Fracture resistance of all-ceramic and metal-ceramic inlays. Int J Prosthodont. 2001; 14 (2): 109-114.

  6. Soares CJ, Martins LR, Fonseca RB, Correr-Sobrinho L, Fernandes Neto AJ. Influence of cavity preparation design on fracture resistance of posterior Leucite-reinforced ceramic restorations. Prosthet Dent. 2006; 95: 421-429.

  7. Morimoto S, Vieira GF, Agra CM, Sesma N, Gil C. Fracture strength of teeth restored with ceramic inlays and overlays. Braz Dent J. 2009; 20: 143-148.

  8. Dalpino PH, Francischone CE, Ishikiriama A, Franco EB. Fracture resistance of teeth directly and indirectly restored with composite resin and indirectly restored with ceramic materials. Am J Dent. 2002; 15 (6): 389-94.

  9. Santos MJ, Bezerra RB. Fracture resistance of maxillary premolars restored with direct and indirect adhesive techniques. J Can Dent Assoc. 2005; 71: 585.

  10. Desai PD, Das UK. Comparison of fracture resistance off teeth restored with ceramic inlay and resin composite: an in vitro study. Indian J Dent Res. 2011; 22 (6): 877.

  11. Banditmahakun S, Kuphausuk W, Kanchanavasita W, Kuphasuk C. The effect of base materials with different elastic moduli on the fracture loads of machinable ceramic inlays. Oper Dent. 2006; 31: 180-187.

  12. Isenberg BP, Essig ME, Leinfelder KF. Three years clinical evaluation of CAD/CAM restorations. J Esthet Dent. 1992; 4 (5): 173-176.

  13. Wael ATT. Fracture resistance of molars restored with different types of ceramic partial coverage restorations. An in vitro study. (Thesis). Freiburg, Baden-Wurttemberg, Germany: Univ. Freiburg; 2003.

  14. Habekost L de V, Camacho GB, Pinto MB, Demarco FF. Fracture resistance of premolars restored with partial ceramic restorations and submitted to two different loading stresses. Oper Dent. 2006; 31 (2): 204-211.

  15. Habekost L de V, Camacho GB, Demarco FF, Powers JM. Tensile bond strength and flexural modulus of resin cements-influence on the fracture resistance of teeth restored with ceramic inlays. Oper Dent. 2007; 32: 488-495.

  16. Cubas GB, Camacho GB, Pereira-Cenci T, Nonaka T, Barbin EL. Influence of cavity design and restorative material on the fracture resistance of maxillary premolars. Gen Dent. 2010; 58 (2): e84-88.

  17. Ona M, Watanabe C, Igarashi Y, Wakabayashi N. Influence of preparation design on failure risks of ceramic inlays: a finite element analysis. J Adhes Dent. 2011; 13: 367-373.

  18. Cubas GB, Habekost L, Camacho GB, Pereira-Cenci T. Fracture resistance of premolars restored with inlay and onlay ceramic restorations and luted with two different agents. J Prosthodont Res. 2011; 55 (1): 53-59.

  19. Holberg C, Rudzki-Janson I, Wichelhaus A, Winterhalder P. Ceramic inlays: Is the inlay thickness an important factor influencing the fracture risk? J Dent. 2013; 41: 628-635.

  20. Moscovich H, Roeters FJ, Verdonschot N, de Kanter RJ, Creugers NH. Effect of composite basing on the resistance to bulk fracture of industrial porcelain inlays. J Dent. 1998; 26 (2): 183-189.

  21. Magne P. Composite resins and bonded porcelain: the postamalgamera? J Calif Dent Assoc. 2006; 34: 135-147.

  22. Anusavice KJ. Phisical properties of dental materials. En: Phillips Science of Dental Materials. 10 edition Philadelphia Saunders WB Company, 1996; pp. 33-76.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev ADM. 2016;73