medigraphic.com
SPANISH

Revista Mexicana de Cardiología

ISSN 0188-2198 (Print)
En 2019, la Revista Mexicana de Cardiología cambió a Cardiovascular and Metabolic Science

Ver Cardiovascular and Metabolic Science


  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number S3

<< Back Next >>

Rev Mex Cardiol 2016; 27 (S3)

Atherosclerosis and inflammatory response: new pathophysiological routes toward a therapeutic role

Nouel A, Rojano-Rada J, Storino-Farina MA
Full text How to cite this article

Language: Spanish
References: 28
Page: 130-137
PDF size: 246.05 Kb.


Key words:

Atherosclerosis, cytokines, vasa vasorum, oxidative stress, autophagy.

ABSTRACT

Atherosclerosis is the focal expression of a systemic disease that affects arteries of medium and large caliber, in which traditional cardiovascular risk factors and immune factors play a key role. The pathogenesis of atherosclerosis involves multiple cellular events, including endothelial cell dysfunction, inflammation, proliferation of vascular smooth muscle cells, altering the matrix, and neovascularization. Proinflammatory cytokines are involved in all stages of atherosclerosis and have a profound influence on the pathogenesis of this disease. For decades, the role of adventitial vasa vasorum in the initiation and progression of atherosclerosis has been studied, where the presence of this precedes the apparent clinical symptoms of atherosclerosis. Moreover, a growing body of evidence indicates that autophagy with acute and chronic overproduction of reactive oxygen species is essential for the development and progression of the disease.


REFERENCES

  1. J, Blaha M et al. Executive summary: heart disease and stroke statistics-2014 update a report: from the American Heart Association. Circulation. 2014; 129: 399-410.

  2. McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog Lipid Res. 2011; 50: 331-347.

  3. Sung W, Kwan-Kyu P. Small-nucleic-acid-based therapeutic strategy targeting the transcription factors regulating the vascular inflammation, remodeling and fibrosis in atherosclerosis. Int J Mol Sci. 2015; 16: 11804-11833.

  4. Ikedo H, Tamaki K, Ueda S, Kato S, Fujii M, Ten Dijke P et al. Smad protein and TGF-β signaling in vascular smooth muscle cells. Int J Mol Med. 2003; 11: 645-650.

  5. Samarakoon R, Overstreet JM, Higgins PJ. TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal. 2013; 25: 264-268.

  6. Ramji DP, Davies TS. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 2015; 26 (6): 673-685. doi: 10.1016/j.cytogfr.2015.04.003.

  7. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011; 17: 1410-1422.

  8. Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discovery. 2010; 9: 141-153.

  9. Zernecke A, Weber C. Chemokines in atherosclerosis: proceedings resumed. Arterioscler Thromb Vasc Biol. 2014; 34: 742-750.

  10. Rousselle A, Qadri F, Leukel L, Yilmaz R, Fontaine JF, Sihn G et al. CXCL5 limits macrophage foam cell formation in atherosclerosis. J Clin Invest. 2013; 123: 1343-1347.

  11. Wolfs IM, Donners MM, de Winther MP. Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost. 2011; 106: 763-771.

  12. Leitinger N, Schulman IG. Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol. 2013; 33: 1120-1126.

  13. Ammirati E, Moroni F, Norata GD, Magnoni M, Camici PG. Markers of inflammation associated with plaque progression and instability in patients with carotid atherosclerosis. Mediators Inflamm. 2015; 2015: 718329.

  14. Norata GD, Ballantyne CM, Catapano AL. New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs. Eur Heart J. 2013; 34 (24): 1783-1789.

  15. Norata GD, Raselli S, Grigore L, Garlaschelli K, Vianello D, Bertocco S et al. Small dense LDL and VLDL predict common carotid artery IMT and elicit an inflammatory response in peripheral blood mononuclear and endothelial cells. Atherosclerosis. 2009; 206 (2): 556-562.

  16. Junyan X, Xiaotong L, Guo-Ping S. Vasa vasorum en aterosclerosis y la importancia clínica. Int J Mol Sci. 2015; 16: 11574-11608.

  17. Ritman EL, Lerman A. Thedynamic vasa vasorum. Cardiovasc Res. 2007; 75: 649-658.

  18. Acoltzin VC, Maldonado VI, Rodríguez CL, Muniz MJ. Diminished vascular density in the aortic wall. Morphological and functional characteristics of atherosclerosis. Arch Cardiol Mexico. 2004; 74: 176-180.

  19. Rademakers T, Douma K, Hackeng TM, Post MJ, Sluimer JC, Daemen MJ et al. Plaque-associated vasa vasorum in aged apolipoprotein E-deficient mice exhibit proatherogenic functional features in vivo. Arterioscler Thromb Vasc Biol. 2013; 33: 249-256.

  20. Perrotta I, Aquila S. The role of oxidative stress and autophagy in atherosclerosis. Oxid Med Cell Longev. 2015; 2015: 130315.

  21. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015; 22 (3): 377-388.

  22. Ren SY, Xu X. Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta. 2015; 1852 (2): 225-231.

  23. Rajawat YS, Bossis I. Autophagy in aging and in neurodegenerative disorders. Hormones. 2008; 7 (1): 46-61.

  24. Van Heerebeek L, Meischl C, Stooker W, Meijer CJ, Niessen HW, Roos D. NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system? J Clin Pathol. 2002; 55 (8): 561-568.

  25. Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 2010; 30 (4): 653-661.

  26. Guzik TJ, Chen W, Gongora MC, Guzik B, Lob HE, Mangalat D et al. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol. 2008; 52 (22): 1803-1809.

  27. Manea A, Manea SA, Florea IC, Luca CM, Raicu M. Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells. Free Radic Biol Med. 2012; 52 (9): 1497-1507.

  28. Zhang Q, Malik P, Pandey D, Gupta S, Jagnandan D, Belin de Chantemele E et al. Paradoxical activation of endothelial nitric oxide synthase by NADPH oxidase. Arterioscler Thromb Vasc Biol. 2008; 28 (9): 1627-1633.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Cardiol. 2016;27