medigraphic.com
SPANISH

MediSan

ISSN 1029-3019 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 08

<< Back Next >>

MediSan 2016; 20 (08)

Evaluation of the electromagnetic environment in rehabilitation wards

Deás YD, Gilart GF, Beira FL
Full text How to cite this article

Language: Spanish
References: 18
Page: 1060-1068
PDF size: 890.59 Kb.


Key words:

electromagnetic environment, physiotherapy, electro-medical device, security limit, rehabilitation wards.

ABSTRACT

A study of the electromagnetic environment was carried out in 2 electrotherapy departments of Palma Soriano in Santiago de Cuba, in order to obtain the distribution pattern for different operability ways and exploitation of the medical-therapeutic equipment. For the electromagnetic characterization of the evaluated environments a measurement protocol was elaborated starting from the analysis of international standards and an isotropic measure was used that showed the results through contour maps. The electro-medical device Magnetomed, model 7200 was the one that contributed the most, although the maximum value of the obtained magnetic induction (19.7 µT) was below the established exhibition limit and above the exhibition limit suggested by the Bioiniciativa Work Group. It is recommended to limit the permanency of people around, while it is in operation.


REFERENCES

  1. Martín Cordero JE. Agentes físicos terapéuticos. La Habana: Editorial Ciencias Médicas; 2008.

  2. Hanada E. The electromagnetic environment of hospitals: how it is affected by the strength of electromagnetic fields generated both inside and outside the hospital. Ann Ist Sup Sanita. 2007;43(3):208-17.

  3. Boivin WS, Boyd SM, Coletta NJ, Harris CD. Measurement of electromagnetic field strengths in urban and subuurban hospital operating rooms. Proceeding of 19th Conference IEEE/EMBS; 1997 [citado 10 Dic 2015]. Disponible en http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=756847

  4. Suárez Cabrera R, Diéguez Suárez R. Valoración del riesgo ocupacional por exposición a campos electromagnéticos en trabajadores que aplican el tratamiento con diatermia. Rev Cubana Hig Epidemial. 1990;28(1): 81-7.

  5. Deás Yero D, Gilart González F, Quintana Revilla D. Caracterización de los niveles de exposición a campos electromagnéticos durante el tratamiento con diatermia. MEDISAN. 2013 [citado 10 Dic 2015];17(6). Disponible en: http://bvs.sld.cu/revistas/san/vol17_6_13/san04176.htm

  6. Travassos JR, Deliz M, Raizer A. Interferencia eletromagnética (EMI) emitida por equipamentos eletromédicos. Sao Paulo: XVIII Congresso Brasileiro de Engenharia Biomédica; 2002.p. 27-32.

  7. Organización Mundial de la Salud. Información sobre campos electromagnéticos (CEM). Evaluaciones de los riesgos para la salud. Ginebra: OMS; 2013.

  8. Comisión Internacional sobre Protección Frente a Radiaciones no Ionizantes. Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields. Health Physics. 1998;74(4):494–522.

  9. Bioinitiative Working Group, Cindy Sage and David O. A rationale for biologicallybased public exposure standards for electromagnetic [citado 10 Dic 2015]. Disponible en: http://www.bioinitiative.org/table-of-contents/

  10. IEEE standard for safety Levels with respect to human exposure to electromagnetic fields, 0–3 kHz. New York: Institute of Electrical and Electronics Engineers; 2002.

  11. International Electrotechnical Commission. Measurement methods for electromagnetic fields of household appliances and similar apparatus with regard to human exposure [citado 10 Dic 2015]. Disponible en: https://law.resource.org/pub/in/bis/S04/is.iec.62233.2005.pdf

  12. IEEE standard procedures for measurement of power frequency eectric and magnetic fields from AC power lines, 1994 [citado 10 Dic 2015]. Disponible en: https://standards.ieee.org/findstds/standard/644-1994.html

  13. Joseph W, Vermeeren G, Verloock L, Goeminne F. In situ magnetic field exposure and ICNIRP-based safety distances for electronic article surveillance systems. Radiat Prot Dosimetry. 2012;148(4):420-7.

  14. Alonso A, Bahillo A, De la Rosa R, Carrera A, Durán RJ, Fernández P. Measurement procedure to assess exposure to extremely low-frequency fields: a primary school case study. Radiat Prot Dosimetry. 2012;151(3):426-36.

  15. Koeman T, Van Den Brandt PA, Slottje P, Schouten LJ, Goldbohm RA, Kromhout H, Vermeulen R. Occupational extremely low-frequency magnetic field exposure and selected cancer outcomes in a prospective Dutch cohort. Cancer Causes Control. 2014;25(2):203-14.

  16. Kheifets L, Bowman JD, Checkoway H, Feychting M, Harrington JM, Kavet R, et al. Future needs of occupational epidemiology of extremely low frequency electric and magnetic fields: review and recommendations. Occup Eniron Med. 2009;66:72-80.

  17. Davanipour Z, Tseng CC, Lee PJ, Markides KS, Sobel E. Severe cognitive dysfunction and occupational extremely low frequency magnetic field exposure among elderly Mexican Americans. Br J Med Med Res. 2014;4(8):1641-62.

  18. Mattsson MO, Simkó M. Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology. 2012;301(1):1-12.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

MediSan. 2016;20