medigraphic.com
SPANISH

Revista Cubana de Pediatría

ISSN 1561-3119 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 3

<< Back Next >>

Rev Cubana Pediatr 2016; 88 (3)

New diagnosis of neonatal cardiac dynamics based on the dynamic systems and the fractal geometry

Rodríguez J, Prieto S, Correa C, Flórez M, López R, Alarcón C, Soracipa Y, Jattin J, Silva S, Valdés C
Full text How to cite this article

Language: Spanish
References: 30
Page: 266-280
PDF size: 243.11 Kb.


Key words:

newborn, cardiac frequency, fractal, non-linear dynamics.

ABSTRACT

Background: the theory of dynamic systems and fractal geometry has been useful to evaluate the cardiac dynamics in adults and neonates. From this perspective, there has been recently developed a new diagnostic method of the chaotic cardiac dynamics in neonates.
Objective: to confirm through a blind study the diagnostic capacity of this methodology to differentiate normal neonatal cardiac registrations from cardiac disease registrations.
Methods: fifty nine registrations were analyzed; 10 with normal diagnoses and 49 with different heart diseases. Conventional diagnoses were masked and the maximum and minimal heart rates were measured every hour as well as the number of beats per hour during 21 hours. For each dynamics, simulations of total heart rate sequences were developed and attractors were generated as well as their fractal dimension was estimated and their occupational spaces in the Box Counting's fractal space were quantified, thus determining the mathematical-physical diagnosis.
Results: the fractal dimensions did not allow differentiating normality from disease. In contrast, it was possible to differentiate, through the occupational spaces of the chaotic attractors found, the normal states from the acute diseases to reach 100 % sensitivity and specificity rates and a Kappa coefficient equal to 1.
Conclusions: the diagnostic capacity of the devised methodology was confirmed at the clinical setting in addition to existence of acausal self-organization of the neonatal cardiac dynamics that sets differences between normality and disease, with preventive clinical applicability.


REFERENCES

  1. Devaney R. A first course in chaotic dynamical systems theory and experiments. New York: Addison Wesley; 1992. p. 24-45.

  2. Peitgen H. Strange attractors, the locus of chaos. In: Peitgen H, Jurgens H, Saupe D. Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag; 1992. p. 655-768.

  3. Girón FJ. Determinismo, caos, azar e incertidumbre [homepage en Internet]; 2008 [citado 19 de octubre de 2015]. Disponible en: http://www.rac.es/ficheros/doc/00327.pdf

  4. Fairchild KD, O'Shea TM. Heart Rate Characteristics: Physiomarkers for Detection of Late-Onset Neonatal Sepsis. Clin Perinatol. 2010;37(3):581-98.

  5. Longin E, Gerstner T, Schaible T, Lenz T, König S. Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat Med. 2006;34(4):303-8.

  6. Eiselt M, Curzi-Dascalova L, Clairambault J, Kauffmann F, Médigue C, Peirano P. Heart-rate variability in low-risk prematurely born infants reaching normal term: a comparison with full-term newborns. Early Hum Dev. 1993;32(2-3):183-95.

  7. Griffin MP, Lake DE, Moorman JR. Heart Rate Characteristics and Laboratory Tests in Neonatal Sepsis. Pediatrics. 2005;115:937-41.

  8. Rodríguez J. Entropía Proporcional de los sistemas dinámicos cardiacos: Predicciones físicas y matemáticas de la dinámica cardiaca de aplicación clínica. Rev Colomb Cardiol. 2010;17:115-29.

  9. Rodríguez J. Mathematical law of chaotic cardiac dynamic: Predictions of clinic application. J Med Med Sci. 2011;2(8):1050-9.

  10. Rodríguez J, Narváez R, Prieto S, Correa C, Bernal P, Aguirre G, et al. The mathematical law of chaotic dynamics applied to cardiac arrhythmias. J Med Med Sci. 2013;4(7):291-300.

  11. Rodríguez J, Correa C, Melo M, Domínguez D, Prieto S, Cardona DM, et al. Chaotic cardiac law: Developing predictions of clinical application. J Med Med Sci. 2013;4(2):79-84.

  12. Griffin MP, Moorman JR. Toward the Early Diagnosis of Neonatal Sepsis and Sepsis-Like llnes using Novel Heart Rate Analisis. Pediatrics. 2001;107:97-104.

  13. Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G, et al. Physicalmathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J Med Med Sci. 2014;5(5):102-8.

  14. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043-65.

  15. Bauer A, Kantelhardt JW, Barthel P, Schneider R, Mäkikallio T, Ulm K, et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet. 2006;367(9523):1674-81.

  16. Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, et al. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet. 1999;353(9162):1390-6.

  17. Voss A, Schroeder R, Vallverdu M, Cygankiewicz I, Vazquez R, Bayes A, et al. Linear and nonlinear heart rate variability risk stratification in heart failure patients. Comput Cardiol. 2008;35:557-60.

  18. Maestri R, Pinna GD, Accardo A, Allegrini P, Balocchi R, D'Addio G, et al. Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J Cardiovasc Electrophysiol. 2007;18(4):425-33.

  19. Ahmad S, Tejuja A, Newman K, Zarychanski R, Seely A. Clinical review: a review and analysis of heart rate variability and the diagnosis and prognosis of infection. Crit Care. 2009;13(232):1-7.

  20. Buchan C, Bravi A, Seely A. Variability Analysis and the Diagnosis, Management, and Treatment of Sepsis. Curr Infect Dis Rep. 2012;14:512-21.

  21. Gonçalves H, Pinto P, Silva M, Ayres-de-Campos D, Bernardes J. Toward the improvement in fetal monitoring during labor with the inclusion of maternal heart rate analysis (abstract). MedBiolEngComput [serie en Internet]. 2016 [citado 3 de septiembre de 2015];54(4). Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/?term=Toward+the+improvement+in+fetal+m onitoring+during+labor+ with+the+inclusion+of+maternal+heart+rate+analysis+during+labor+with+the+incl usion+of+maternal+heart+rate+analysis

  22. Leeuwen PV, Geue D, Lange S, Klein A, Franzen AM, Heller K, et al. Relation between neonatal behavioral states and heart rate variability. Biomed Tech. 2012;57(supl 1):615-8.

  23. Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G, et al. Sistemas dinámicos cardiacos en neonatos normales: ley caótica cardiaca neonatal. Salud Uninorte. 2014;30(3):359-68.

  24. Einstein A. Principios de Física Teórica. En: Einstein A. Sobre la teoría de la relatividad y otras aportaciones científicas. Madrid: Sarpe; 1983. p. 29-32.

  25. Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Medical Physics. 2010;10:1-6.

  26. Correa C, Rodríguez J, Prieto S, Álvarez L, Ospino B, Munévar A, et al. Geometric diagnosis of erythrocytemorphophysiology. J Med Med Sci. 2012;3(11):715-20.

  27. Rodríguez J, Prieto S, Correa C, Dominguez D, Cardona DM, Melo M. Geometrical nuclear diagnosis and total paths of cervix cell evolution from normality to cancer. J Can Res Ther. 2015;11(1):98-104.

  28. Rodríguez J, Bernal P, Prieto S, Correa C, Álvarez L, Pinilla L, et al. Predicción de unión de péptidos de Plasmodium falciparum al HLA clase II. Probabilidad combinatoria y entropía aplicadas a las proteínas MSP-5 y MSP-6. Archivos de Alergia e Inmunología Clínica. 2013;44(1):7-14.

  29. Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010;27(3):211-8.

  30. Rodríguez J, Prieto S, Correa C, Pérez C, Mora J, Bravo J, Soracipa Y, Álvarez L. Predictions of CD4 lymphocytes' count in HIV patients from complete blood count. BMC Medical Physics. 2013;13:3.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Pediatr. 2016;88