medigraphic.com
SPANISH

Medicina Interna de México

Colegio de Medicina Interna de México.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 5

<< Back Next >>

Med Int Mex 2016; 32 (5)

Relationship between impaired fasting glucose and fibrinogen levels

Avilés-Rosas G, Dávila-Sosa D, Rubio-Guerra AF, Elizalde-Barrera CI, Huerta-Ramírez S
Full text How to cite this article

Language: Spanish
References: 43
Page: 515-526
PDF size: 709.69 Kb.


Key words:

dysglycemia, fibrinogen, diabetes mellitus.

ABSTRACT

Background: Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in secretion or insulin action. States pre-diabetic as glucose intolerance are described, so early intervention of this disease could lessen the impact it has on the Mexican population.
Objetive: To evaluate the possible difference in fibrinogen levels in patients who are in a prediabetic condition, compared to control group of patients with type 2 diabetes mellitus group.
Material and Method: An observational, comparative, crosssectional and prolective study was done. A total of 48 patients, divided into three groups according to the levels of fasting blood glucose (diabetes, impaired fasting glucose, and healthy patients), each with a total of 16 patients per group were assigned. Fibrinogen levels (serum) were determined in all groups and the difference was compared among three groups.
Results: Of the 48 patients, 58% were female; the homogeneous distribution of groups was determined by ANOVA with a significant difference in blood glucose levels (basic precept for this study); p=0.331 was obtained by comparing means Kruskal-Wallis the groups according to serum fibrinogen. Spearman correlation was performed to evaluate the correlation between the variables, finding an inverse correlation with a value of r=-.225 and p=.402, with no statistically significant difference in serum fibrinogen levels among the three groups. In the group of dysglycemia not statistically significant correlation was detected between fibrinogen level and glucose level.
Conclusions: No statistically significant difference was found about the level of fibrinogen among the three groups; although higher fibrinogen levels were observed in the group of patients diagnosed as diabetic. According to our results there is not relationship between serum fibrinogen and impaired fasting glucose.


REFERENCES

  1. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2013;36:67-74.

  2. Federación Mexicana de Diabetes, A.C. Encuesta Nacional de Salud y Nutrición 2012. [sede web]. México: Federación Mexicana de Diabetes, A.C. [acceso el 15 de febrero de 2014]. Disponible en: www.fmdiabetes.org.

  3. Waitman J. Prevención del riesgo cardiovascular en las disglucemias. Rev Soc Arg Diabet 2008;42:262-264.

  4. Perseghin G, Petersen K, Shulman GI. Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes 2003;27:6-11.

  5. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;12:1821-1830.

  6. Ros Pérez M, Medina-Gómez G. Obesidad, adipogénesis y resistencia a la insulina. Endocrinol Nutr 2011;58:360-369.

  7. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006;116:1793-1801.

  8. Morales Villegas E. Síndrome X vs síndrome metabólico: entendiendo sus coincidencias y sus diferencias hacia una “nueva cardiología”. Arch Cardiol Mex 2006;76:173-188.

  9. Recomendaciones para la práctica clínica sobre diabetes. Am Diabet Assoc 2013;2013:1-25.

  10. Comisión de Diabetes. Rev Arg Cardiol 2001;69:1-10.

  11. Toros HX, Castellanos R, Fernández-Britto JE. Fibrinógeno y riesgo trombótico cardiovascular: algunas reflexiones. Rev Cubana Invest Biomed 2005;24:1-17.

  12. López de Sá E. La hiperglucemia en el síndrome coronario agudo: ¿objetivo terapéutico o espectador que confiere un mayor riesgo? Rev Clin Esp 2011;211:298-300.

  13. Kosiborod M, Rathore SS, Inzucchi SE, Masoudi FA, et al. Admission glucose and mortality in elderly patients hospitalized with acute myocardial infarction: implications for patients with and without recognized diabetes. Circulation 2005;111:3078-3086.

  14. Monteiro S, Monteiro P, Gonçalves F, Freitas M, Providencia LA. Hyperglycaemia at admission in acute coronary syndrome patients: prognostic value in diabetics and nondiabetics. Eur J Cardiovasc Prev Rehabil 2010;17:155-159.

  15. Cabrerizo-García JL, Gimeno-Orna J, Zalba-Etayo B, Pérez-Calvo JI. La hiperglucemia como factor de mal pronóstico en el síndrome coronario agudo. Rev Clin Esp 2011;211:275-282.

  16. The European Society of Cardiology. Do atherosclerosis and type 2 diabetes share a common inflammatory basis? Eur Heart J 2002;23:831-834.

  17. González CA y col. Inflamación y resistencia a la insulina: Mecanismos para el desarrollo de la disfunción endotelial y aterosclerosis. Rev Mex Cardiol 2006;17:71-82.

  18. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunology 2014;25:4-7.

  19. Hotamisligil GS, et al. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:87-91.

  20. Kern PA, et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995;95:2111-2119.

  21. Dandona P, et al. Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab 1998;83:2907-2910.

  22. Mantzoros CS, et al. Leptin concentrations in relation to body mass index and the tumor necrosis factor-alpha system in humans. J Clin Endocrinol Metab 1997;82:3408-3413.

  23. Yudkin JS, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999;19:972-978.

  24. Mohamed-Ali V, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997;82:4196-4200.

  25. Lundgren CH, et al. Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenetic link between obesity and cardiovascular disease. Circulation 1996;93:106-110.

  26. Crook MA, et al. Elevated serum sialic acid concentration in NIDDM and its relationship to blood pressure and retinopathy. Diabetes Care 1993;16:57-60.

  27. Pickup JC, et al. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997;40:1286-1292.

  28. Schmidt MI, et al. Markers of inflammation and prediction of diabetes mellitus in adults (atherosclerosis risk in communities study): a cohort study. Lancet 1999;353:1649-1652.

  29. Duncan BB, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003:52:1799-1805.

  30. Duncan BB, et al. Fibrinogen, other putative markers of inflammation, and weight gain inmiddle-aged adults-the ARIC study. Atherosclerosis risk in communities. Obes Res 2000;8:279-286.

  31. Pradhan AD, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001;286:327-334.

  32. Barzilay JI, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the cardiovascular health study. Diabetes 2001;50:2384-2389.

  33. Han TS, et al. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City diabetes study. Diabetes Care 2002;25:2016-2021.

  34. Pradhan AD, et al. C-reactive protein is independently associated with fasting insulin in nondiabetic women. Arterioscler Thromb Vasc Biol 2003;23:650-655.

  35. Wang JT, Gona P, Larson MG, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med 2006;355:2631-2639.

  36. Avances Médicos. Valor pronóstico de los nuevos biomarcadores para eventos cardiovasculares. [sede web]. México: Avances Médicos 2007 [acceso el 15 de febrero de 2014]. Disponible en: www.intermedicina.com

  37. Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med 1993;118:956-963.

  38. Kamath S, Lip GY. Fibrinogen: biochemistry, epidemiology and determinants. QJM 2003;96:711-729.

  39. Maresca G, Di Blasio A, Marchioli R, Di Minno G. Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Arterioscler Thromb Vasc Biol 1999;19:1368-1377.

  40. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, Pennells L, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 2012;367:1310-1320.

  41. Lastra G Guido, et al. Síndrome cardiometabólico: Inflamación, tejido adiposo, resistencia a la insulina y aterogénesis– se expande el rompecabezas. Acta Med Colomb 2005;30:100-111.

  42. Festa A, D’Agostino Jr R, Howard G, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000;102:42-47.

  43. Campos G. Relación del fibrinógeno con factores de riesgo cardiovascular en hombres aparentemente sanos de Maracaibo, Venezuela. Invest Clin 2008:49:341-351.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Int Mex. 2016;32