medigraphic.com
SPANISH

Revista Cubana de Informática Médica

ISSN 1684-1859 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 3

<< Back Next >>

Revista Cubana de Informática Médica 2016; 8 (3)

Methodology for stability analysis in N-Dimensional equations systems

González MY, Moreno LN, Moreno LE
Full text How to cite this article

Language: Spanish
References: 12
Page: 515-525
PDF size: 195.17 Kb.


Key words:

time series, stability, exponent of Lyapunov.

ABSTRACT

The analysis of the stability that present the systems when being in front of certain variations of the initial conditions and the parameters that it characterize, it is today one of the important studies that carried out to the dynamic systems. The existent methods until the moment don't allow making this analysis in more than a time series at the same time, because in general they annul the ability to gather in oneself study the possibility to verify how they influence the variations. That´s the reason why the present work has the purpose of to put in the investigator's hands a methodology that allows to study the stability of the Systems of n-dimensional Differential Equations, regarding the variation of the parameters of the same one and to interpret the obtained results. Specifically like essential part of the methodology was used the function lyapunov developed inside the mathematical assistant Matlab and for the analysis of those results the technique of Datamining was included: Trees of Decision, also wanting to have results in the smallest possible time, one worked with the Platform of Tasks Distributed T-arenal. The methodology was applied to a case of study reported in the literature and one was proven that it was obtained the same classification of stability or uncertainty. On the other hand, when carrying out the analysis in a quantity of time series, the time in that the result was obtained was considerably small, concerning its complexity.


REFERENCES

  1. Michael T. Rosenstein J. Collins CJ. A practical method for calculating largest Lyapunov. Boston University: s.n., 1992.

  2. Navarro J. Ponencia en Congreso Psicología Social. Dinámicas No Lineales: Algunas Técnicas de Análisis y Software Libre. Cádiz. España : s.n., 2007.

  3. Wolf A, Swift JB, Harry L. Swinney JA. Determining Lyapunov exponents from a time series. Vastano. North-Holland, Amsterdam : Physica 16D, 1985, Vols. 16, pp. 285-317.

  4. Groller E, Löffelmann H, Wegenkittl R. Visualization of dynamical systems. Elsevier Science Publishers B. Amsterdam, 15(1). (1999).

  5. Edelstein L. Mathematical models in Biology (1st ed.). United States: Random House. (1988).

  6. Stewart J. Cálculo con Trascendentes Tempranas (Cuarta ed. Vol. 3): internacional Thomson Editors. (2002).

  7. Solé RV, Manrubia SC . Orden y caos en sistemas complejos. Fundamentos. Edicions UPC, 84, 8301-8430-8300. (2001).

  8. Aguirre A. Introducción al tratamiento de series temporales. Aplicación a las ciencias de la Salud. Madrid: Ediciones Díaz de Santos. (1994).

  9. Agamennoni G, Moiola JL. Implementación de un algoritmo para el cómputo de los exponentes de Lyapunov. s.l. : XII Reunión de Trabajo en Procesamiento de la Información y Control, (2007).

  10. Benettin G, Galgani L, Giorgilli A, Strelcyn JM. Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them. 9, s.l.: Meccanica, Vol. 15. (1980).

  11. Singh BN, Tiwari AK. MATLAB-The Language of Technical Computing. The MathWorks MathWorks, T. (1984).

  12. Lara L, Stoico C, Machado R, Castagnino M. Estimación de los exponentes de Lyapunov. Revista Argentina: Mecánica Computacional, V12 (22). (2003).




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Informática Médica. 2016;8