medigraphic.com
SPANISH

Revista Cubana de Medicina Tropical

ISSN 1561-3054 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2016, Number 2

<< Back Next >>

Rev Cubana Med Trop 2016; 68 (2)

Situation of resistance to insecticides in Aedes aegypti (Diptera: Culicidae) from Pinar del Rio municipality

Rodríguez MM, Bisset JA, Hurtado D, Montada D, Leyva M, Castex M, Hernández H, O Farril LA, Fuentes I
Full text How to cite this article

Language: Spanish
References: 15
Page: 125-135
PDF size: 197.36 Kb.


Key words:

Aedes aegypti, temephos, pyrethroid insectide, insecticidal resistance, synergists, resistance mechanisms.

ABSTRACT

Introduction: the control program of Aedes aegypti (Linnaeus) (Diptera: Culicidae) in Cuba uses temephos as larvicide and pyrethroids as adulticide although the organophosphorate chlorpyrifos has been barely used. The level of knowledge about resistance to insecticides is essential to effectively control this species.
Objective: to determine the level of resistance to insecticides of Ae. aegypti from Pinar del Rio in its technical aspect and in commercial formulations.
Methods: one Ae. aegypti strain from the health area "Raul Sánchez" in Pinar del Rio province was evaluated through the World Health Organization bioassays to determine susceptibility of larvae to temephos in its technical formulation. Additionally, three granulated formulations of temephos were evaluated (Abatex- G1, Biolarv G-1 and Temefar G-1). In the adult state, the level of susceptibility to pyrethroids called cypermethrin, deltamethrin, lambda cyhalothrine and to organophosphate chlorpyrifos in its technical formulation. Some of them were evaluated in its commercial formulation (Galgotrin 25 EC (cypermethrin), Aqua KOtrina 2 EW (deltamethrin) and Clorcide 44 EC (chlorpyrifos).
Results: it was found in larvae that the resistance to temephos was high in the technical formulation, but the commercial formulation showed an effectiveness rate of 100 %., with daily change of water, up to 20 days for Temefar G1, 18 days for Biolarv G1 and 12 for Abatex G1. In the assays with adult vectors, the strain turned to be susceptible to cypermethrin, deltamethrin and chlorpyrifos and resistant to lambda cyhalothrin. Regarding the three evaluated commercial formulations, resistance to Aqua K-Otrina 2 EW was proved.
Conclusions: the use of integrated control strategies for Ae. aegypti makes it necessary to reduce the frequency of use of temephos and to recover the effectiveness of this insecticide. Moreover, it will avoid the occurrence of resistance to adulticide products that are still effective for the control of this species in the study area.


REFERENCES

  1. Rodríguez MM, Bisset JA, Milá L, Lauzán L, Soca A. Niveles de resistencia a insecticidas y sus mecanismos en una cepa de Aedes aegypti de Santiago de Cuba. Rev Cubana Med Trop. 1999;51:83-8.

  2. Bisset JA, Rodríguez MM, Ricardo Y, Ranson H, Perez O. Temephos resistance and esterase activity in Aedes aegypti (Diptera: Culicidae) from Havana city increased dramatically between 2006 and 2008. Med Vet Entomol. 20011a;25:233-9.

  3. Bisset J, Rodríguez M, Moya M, Ricardo R, Montada D, Gato R, et al. Efectividad de formulaciones de insecticidas para el control de adultos de Aedes aegypti en La Habana, Cuba. Rev Cubana Med Trop. 2011b;63:166-70.

  4. Rodríguez MM, Bisset JA, Fernández D. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. J Am Mosq Control Assoc. 2007;23:420-9.

  5. Bisset JA, Marín R, Rodríguez MM, Severson DW, Ricardo Y, French L, et al. Insecticide Resistance in Two Aedes aegypti (Diptera: Culicidae) Strains from Costa Rica. J Med Entomol. 2013;50:352-61.

  6. Pérez O, Rodríguez J, Bisset JA, Leyva M, Díaz M, Fuentes O, et al. Manual de indicaciones. Técnica para insectarios. La Habana: Editioral Ciencias Médicas; 2004.

  7. World Health Organization. Instructions for Determining the Susceptibility or Resistance of Mosquito Larvae to Insecticides. WHO/VBC/81.80. Geneva: WHO; 1981.

  8. Mazzarri MB, Georghiou GP. Characterization of resistance to organophosphate, carbamate and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Control Assoc. 1995;11:315-22.

  9. Guías CDC. Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. In: Brogdon G, Chan BH (eds.). Centers for Disease Control and Prevention; 2010.

  10. OMS. 15to Informe del Comité de Expertos de la OMS en Biología de Vectores y Lucha Antivectorial. Ginebra; 1992.

  11. Bisset JA, Rodríguez MM, French L, Severson D W, Gutiérrez G, Hurtado D, and Fuentes I. Insecticide resistance and metabolic mechanisms involved in larval and adult stages in Aedes aegypti resistant reference strains from Cuba. J Am Mosquito Control Assoc. 2014;30(4).

  12. Rodríguez MM, Bisset JA, Moya M, Ricardo Y, Pérez O, Fuentes I, et al. Impacto operacional del uso de insecticidas en larvas de Aedes aegypti en La Habana. Rev Cubana Med Trop. 2011;6(2):81-6.

  13. Montella IR, Martins AJ, Viana-Medeiros PF, Lima JB, Braga I, Valle D. Insecticide resistance mechanism of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg. 2007;7:467-70.

  14. Conde M, Orjuela L, Castellanos CA, Herrera-Varela M, Licastro S, Quiñones M. Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. Biomédica. 2015;35:43-52.

  15. Deming R, Manrique-Saide P, Medina Barreiro A, Cardeña EU, Che-Mendoza A, Jones B, et al. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasit Vectors. 2016;9(67). DOI 10.1186/s13071-016-1346




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Med Trop. 2016;68