medigraphic.com
SPANISH

Revista Cubana de Informática Médica

ISSN 1684-1859 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2017, Number 1

<< Back Next >>

Revista Cubana de Informática Médica 2017; 9 (1)

Markov chains applied to the analyzis of the progress of research projets

López HE, Joa TLG
Full text How to cite this article

Language: Spanish
References: 8
Page: 44-51
PDF size: 165.41 Kb.


Key words:

research projects, Markov chains, stochastic approach, quantitative methods, applied mathematics.

ABSTRACT

Modern management tools require support from different branches of science to help the decision–making process, such as Applied Mathematics. In this context, random variables with change over time, and that can be represented by quantitative models appear. When these models in the present state of these variables summarizes all the previous information to describe how they will behave in the future, it is said that we are in the presence of a Markov chain; an efficient tool for the analysis of processes of this nature, such as the execution of research projects, which is of great importance in the management of science and technological innovation; key result area at any university. In the Faculty of Technology, University of Medical Sciences of Santiago de Cuba, the analysis of the implementation of research projects was considered as a Markov chain, defining the different states through which can be a project and the odds of this is in a certain state from the state it was. And support elements that enable decision–making in the short and long term, from historical data in the period 2013–2015 were determined, related to the average number of inspections to a project, the probability of a project likely to close, etc.; allowing to predict in terms of probabilities the status of this subsystem in the future.


REFERENCES

  1. Gallagher C. A, Watson H. J. Métodos Cuantitativos para la Toma de Decisiones en Administración. Editorial Ciencias Médicas. La Habana, 2008.

  2. Escalona P. Métodos Cuantitativos para la Administración. Materialbásico de Métodos Cuantitativos para la Administración de la Maestría en Matemática Aplicada e Informática para la Administración. Universidad de Holguín. Holguín, 2008.

  3. Hillier F. S, Lieberman G.J. Introducción a la Investigación de Operaciones. Novena Edición. Mc Graw Hill. México D. F, 2010.

  4. Escalona P. Apuntes sobre Cadenas de Markov. Material básico de Métodos Cuantitativos para la Administración de la Maestría en Matemática Aplicada e Informática para la Administración. Universidad de Holguín. Holguín, 2008.

  5. Allen M. A. Dilataciones Unitarias y Cadenas de Markov. Trabajo especial de grado para optar por el título de Licenciada en Matemática. Universidad Central de Venezuela. Caracas, 2005.

  6. Álvarez M. Modelos Económicos – Matemáticos II. Tomo 1. Editora ISPJAE. La Habana, 1987.

  7. Meyn S. P, Tweedie R. L. Markov Chains and Stochastic Stability. Second Edition. Cambridge University Press. Cambridge, 2009.

  8. Peschek, W. Modelos de input – output y cadenas de Markov. Management Mathematics for European Schools. [Consultado en enero de 2014]. Disponible en: http://www.mathematik.unikl.de/mamaeusch/




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Informática Médica. 2017;9