medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2017, Number 2

<< Back

TIP Rev Esp Cienc Quim Biol 2017; 20 (2)

Bark-beetles (Coleoptera: Curculionidae) and climate change: current situation and perspectives for temperate forests

del-Val E, Sáenz-Romero C
Full text How to cite this article

Language: Spanish
References: 61
Page: 53-60
PDF size: 874.77 Kb.


Key words:

coniferous forests, climate change, drought, Scolytinae.

ABSTRACT

Temperate forests are experiencing important modifications due to climate change, in polar latitudes they are increasing their distributional range while in tropical latitudes they are decreasing, due to higher temperature and droughts. Bark beetles are considered one of the biotic agents that regulate temperate forests because they kill some trees. These insects have increased in abundance, favored by climate change, and the consequences for temperate forests are evident. In recent times, the northern hemisphere has suffered a massive coniferous mortality due to the negative synergy between climate change and bark beetle abundance. Mexico has also experienced bark beetle infestations never seen before; this is why it is important to understand the interactions between climate change, forest health and bark beetle abundance to visualize the most important bark beetle susceptible areas in Mexico. Also with this information we could propose management strategies to diminish bark beetle impacts.


REFERENCES

  1. Allen, C. D., Breshears, D. D. & McDowell, N. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1-54. DOI: 10.1890/ES15-00203.1

  2. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, M., Vennetier, T., Kitzberger, A., Rigling, D. D., Breshears, E. H., Hogg, González, P., Fensham, R., Zhang, J., Castro, J., Deminova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A. & Cobb, N. S. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660-684. DOI: 10.1016/j. foreco.2009.09.001

  3. Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B. J., Hood, S., Lichestein, J. W., Macalady, A. K., McDowell, N., Pan, Y., Raffa, F. K., Sala, A., Shaw, J. D., Stephenson, N. L., Tague, C. & Zeppel, M. (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208:674–683. DOI: 10.1111/nph.13477

  4. Archer, S., Schimel, D. S. & Holland, E. A. (1995). Mechanisms of shrubland expansion: land use, climate or CO2? Climatic Change 29:91-99. DOI: 10.1007/BF01091640

  5. Atkinson, T. H. (2013). Estado de conocimiento de la taxonomía de los escarabajos descortezadores y ambrosiales de México (Coleoptera: Curculionidae: Scolytinae). Pages 13-27 in XVI Simposio de Parasitología Forestal. Comisión Nacional Forestal.

  6. Bentz, B. J., Logan, J. A. & Amman, G. D. (1991). Temperaturedependent development of the mountain pine beettle (Coleoptera: Scolytidae) and simulation of its phenology. The Canadian Entomologist 123:1083-1094.

  7. Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., Kelsey, R. G., Negrón, J. F. & Seybold. S. J. (2010). Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects. Bio-Science 60:602-613. DOI: 10.1525/bio.2010.60.8.6

  8. Berrueta Soriano, V. M. (2007). Evaluación energética del desempeño de dispositivos para la cocción con leña. UNAM, México, D.F.

  9. Billings, R. F., Clarke, R. S., Espino Mendoza, V., Cordón-Cabrera, P., Meléndez Figueroa, J. R., Campos, J. R. & Baeza, G. (2004). Bark beetle outbreaks and fire: a devastating combination for Central America’s pine forests. Unasylva 55:15-21.

  10. Bray, D. B., Merino, P. L. & Barry, D. (2007). Los bosques comunitarios de México: manejo sustentable de paisajes forestales. Instituto Nacional de Ecología, México, D.F.

  11. Brolsma, R. J. (2010). Effect of climate change on temperate forest ecosystems. Royal Dutch Geographical Society / Faculty of Geosciences, Utrecht University, Utrecht.

  12. Challenger, A. & Soberón, J. (2008). Los ecosistemas terrestres. Pages 87-108 in Conabio, editor. Capital natural de México, vol. 1: Conocimiento actual de la biodiversidad. CONABIO.

  13. Christiansen, E. & Bakke, A. (1988). The spruce bark beetle of Eurasia. Pages 479-503 in A. A. Berryman, editor. Dynamics of Forest Insect Populations: Patterns, Causes, Implications. Plenum, New York.

  14. Cibrián-Tovar, D., Méndez, J. T., Campos, R., Yates III, O. & Flores, J. (1995). Insectos Forestales de México/Forest Insects of México. Universidad Autónoma Chapingo. SARH.USDA.Natural Resources Canada. Comisión Forestal de América del Norte. FAO.

  15. CONABIO. (2009). Capital Natural de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

  16. Cudmore, T. J., Björklund, N., Carroll, A. L. & Staffan Lindgren, B. (2010). Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naıtve host tree populations. Journal of Applied Ecology 47:1036-1043. DOI: 10.1111/j.1365-2664.2010.01848.x

  17. Dhar, A., Parrott, L. & Hawkins, C. D. B. (2016(. Aftermath of Mountain Pine Beetle Outbreak in British Columbia: Stand Dynamics, Management Response and Ecosystem Resilience. Forests 7:1- 19. DOI: 10.3390/f7080171

  18. Etaough Jones, M., Paine, T. D., Fenn, M. E. & Poth, M. A. (2004). Influence of ozone and nitrogen deposition on bark beetle activity under drought conditions. Forest Ecology and Management 200:67-76. DOI: 10.1016/j.foreco.2004.06.003

  19. Faccoli, M. (2002). Winter mortality in sub-corticolous populations of Ips typographus (Coleoptera, Scolytidae) and tis parasitoird in the south-eastern Alps. Journal of Pest Science 75:62-68. DOI: 10.1034/j.1399-5448.2002.02017.x

  20. Farrel, B. D., Squeira, A. S., O´Meara, B. C., Normark, B. B., Chung, J. H. & Jordal, B. H. (2001). The evolution of agriculture in beetles (Curculionidae: Scolytinae adn Platypodinae). Evolution 55:2011- 2027. DOI: 10.1111/j.0014-3820.2001.tb01318.x

  21. Fonseca, G. J., de los Santos-Posadas, H., Llanderal, C. C., Cibrián- Tovar, D., Rodríguez, T. D. & Vargas, H. J. (2008). Ips e insectos barrenadores en árboles de Pinus montezumae dañados por incendios. Madera y bosques 14:69-80.

  22. Gaylord, M. L., Kolb, T. E. & McDowell, N. (2015). Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees. Tree Physiology 35:806-816. DOI: 10.1093/ treephys/tpv038

  23. González, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. (2010). Global patterns in the vulnerability of ecossytems to vegetation shifts due to climate change. Global Ecology and Biogeography:1-14. DOI: 10.1111/j.1466-8238.2010.00558.x

  24. Grace, J., Beringer, F. & Nagy, L. (2002). Impacts of climate change on the tree line. Annals of Botany 90:537-544. DOI: 10.1093/ aob/mcf222

  25. Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T. & Safranyik, L. (2003). Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987-990. DOI: 10.1038/nature06777

  26. Lenoir, J., Gégout, J. C., Marquet, P., de Ruffray, P. & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th Century. Science 320. DOI: 10.1126/ science.1156831

  27. Logan, J. A., Régnière, J. & Powell, J. A. (2003). Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment 1:130-137. DOI: 10.1890/1540- 9295 (2003)001[0130:ATIOGW]2.0.CO;2

  28. Manzo-Delgado, L., López-García, J. & Alcántara-Ayala, I. (2013). Role of forest conservation in lessening land degradation in a temperate region: The Monarch Butterfly Biosphere Reserve, Mexico. Journal of Environmental Management 138:55-66. DOI: 10.1016/j.jenvman.2013.11.017

  29. Mátyás, C. (2010). Forecasts needed for retreating forests. Nature 469:1271. DOI: 10.1038/4641271a

  30. Návar, J. (2015). Hydro-climatic variability and perturbations in Mexico’s north-western temperate forests. Ecohydrology 8:1065- 1072. DOI: 10.1002/eco.1564

  31. Negrón, J. F., McMillin, J. D., Anhold, J. A. & Coulson, D. (2009). Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. Forest Ecology and Management 257:1353-1362. DOI: 10.1016/j.foreco.2008.12.002

  32. Negrón, J. F. & Popp, J. B. (2004). Probability of ponderosa pine infestationby mountains pine beetle in the Colorado Front Range. Forest Ecology and Management 191:17-27. DOI: 10.1016/j. foreco.2003.10.026

  33. Parmesan, C., Ryholm, N., Stefanescu, C., Holl, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W. J.,Thomas, J. A. & Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579-583. DOI: 10.1038/21181

  34. Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37- 42. DOI:

  35. Pausas, J. G. & Keeley, J. E. (2009). A Burning Story: The Role of Fire in the History of Life. Bio-Science 59:593-601. DOI: 10.1525/ bio.2009.59.7.10

  36. Pavia, E. G., Graef, F. & Reyes, J. (2009). Annual and seasonal surface air temperature trends in Mexico. International Journal of Climatology 29:1324-1329. DOI: 10.1002/joc.1787

  37. Pérez-Salicrup, D. R., Cantú-Fernández, M., Jaramillo-López, P. F., Carlón-Allende, T., Sáenz-Ceja, E., Garduño-Mendoza, E. & Martínez-Torres, L. (2016). Restauración de un proceso: el fuego en la Reserva de la Biosfera Mariposa Monarca en los estados de México y Michoacán. Experiencias mexicanas en la restauración de los ecosistemas. UNAM, CRIM-UEAM, CONABIO, Cuernavaca, Morelos.

  38. Raffa, K. F., Aukema, B. H., Bentz, B. J., Carroll, A. L., Hicke, J. A., Turner, M. G. & Romme, W. H. (2008). Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. Bio-Science 58:501-517. DOI: 10.1641/B580607

  39. Reeve, J. D. (1997). Predation and bark beetle dynamics. Oecologia 112:48-54. DOI: 10.1007/s004420050282

  40. Rehfeldt, G. E., Crookston, N. L., Sáenz-Romero, C. & Campbel, E. (2012). North American vegetation model for land use planning in a changing climate: A statistical solution to large classification problems. Ecological Applications 22:119-141. DOI: 10.1007/ s10584-009-9753-5

  41. Reich, R. M., Lundquist, J. E. & Hughes, K. (2016). Host-environment mismatches associated with subalpine fir decline in Colorado. Journal of Forestry Research 27:1177-1189. DOI: 10.1007/ s11676-016-0234-1

  42. Rodríguez-Trejo, D. A. (2008). Fire regimes, fire ecology, and fire management in Mexico. Ambio 37:548-556. DOI: 10.1579/0044- 7447-37.7.548

  43. Rubín-Aguirre, A., Sáenz-Romero, C., Lindig-Cisneros, R., del- Río-Mora, A. A., Tena-Morelos, C. A., Campos-Bolaños, R. & del-Val, E. (2015). Bark beetle pests in an altitudinal gradient of a Mexican managed forest. Forest Ecology and Management 343:73-79. DOI: 10.1016/j.foreco.2015.01.028

  44. Ryall, K. L. & Fahrig, L. (2005). Habitat loss decreases predator-prey ratios in a pine-bark beetle system. Oikos 110:265-270. DOI: 10.1111/j.0030-1299.2005.13691.x

  45. Rzedowski, J. (1978). Vegetación de México. Limusa, México, D.F.

  46. Sáenz-Romero, C., Rehfeldt, G. E., Crookston, N. L., Duval, P. & Beaulieu, J. (2010). Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Climatic Change 102:595-623. DOI: 10.1007/s10584-009-9753-5

  47. Safranyik, L., Carroll, A. L., Regniere, J., Langor, D. W., Riel, W. G., Shore, T. L., Peter, B., Cooke, B. J., Nealis, V. G. & Taylor, S. W. (2010). Potential for range expansion of mountain pine beetle into the boreal forest of North America. Canadian Entomologist 142:415-442. DOI: 10.4039/n08-CPA01

  48. Safranyik, L. & Linton,D. A. (1998). Mortality of mountain pine beetle larvae, Dendroctonus ponderosae (Coleoptera: Scolytidae) in logs of lodgepole pine (Pinus contorta var. latifolia) at constant low temperatures. Journal of the Entomological Society of British Columbia 95:81-87.

  49. Salinas-Moreno, Y., Ager, A., Vargas, C. F., Hayes, J. L. & Zúñiga, G. (2010). Determining the vulnerability of Mexican pine forests to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Forest Ecology and Management 260:52-61. DOI: 10.1016/j.foreco.2010.03.029

  50. Salinas-Moreno, Y., Mendoza, M. G., Barrios, M. A., Cisneros, R., Macías-Sámano, J. & Zúñiga, G. (2004). Areography of the genus Dendroctonus (Coleoptera: Curculionidae: Scolytinae) in Mexico. Journal of Biogeography 31:1163-1177. DOI: 10.1111/j.1365-2699.2004.01110.x

  51. Sánchez-González, A. (2008). Una visión actual de la diversidad y distribución de los pinos de México. Madera y bosques 14:107-120.

  52. Schutt, P. & Cowling, E. B. (1985). Waldsterben, a general decline of forests in central Europe: symptoms, development, and possible causes. Plant Disease 69:548-558.

  53. SEMARNAT. (2015). Anuario estadístico de la producción forestal 2014. SEMARNAT, México, D.F.

  54. Smith, T. M., Leemans, R. & Shugart, H. H. (1992). Sensitivity of terrestrial carbon storage to CO2-induced climate change - comparison of 4 scenarios based on general-circulation models. Climatic Change 21:367-384. DOI: 10.1007/BF00141377

  55. Ungerer, M. J., Ayres, M. P. & Lombardero, M. J. (1999). Climate and the northern distribution limits of Dendroctonus frontalis Zimmerman (Coleoptera: Scolytidae). Journal of Biogeography 26:1133-1145. DOI: 10.1046/j.1365-2699.1999.00363.x

  56. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O. & Barilein, F. (2002). Ecological responses to recent climate change. Nature 416:389-395. DOI: 10.1038/416389ª

  57. Wilson, R. J., Gutiérrez, D., Gutiérrez, J., Martínez, D., Agudo, R. & Monserrat, V. J. (2005). Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters 8:1138-1146. DOI: 10.1111/j.1461-0248.2005.00824.x

  58. Winter, M. B., Baier, R. & Ammer, C. (2015). Regeneration dynamics and resilience of unmanaged mountain forests in the Northern Limestone Alps following bark beetle-induced spruce dieback. European Journal of Forest Research 134:949-968. DOI: 10.1007/ s10342-015-0901-3

  59. Wood, S. L. (1982). The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Natural Memories 6:1-1359.

  60. World Metereological Organization. (2013). The global climate 2001- 2010; a decade of climate extremes; summary report. World Metereological Organization, Génova, Suiza.

  61. Worral, J. J., Rehfeldt, G. E., Hamann, A., Hogg, E. H., Marchetti, S. B., Michaelian, M. & Gray, L. K. (2013). Recent declines of Populus tremuloides in North America linked to climate. Forest Ecology and Management 299:35–51. DOI: 10.1016/j.foreco.2012.12.033




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2017;20