medigraphic.com
SPANISH

MediSan

ISSN 1029-3019 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2017, Number 06

<< Back Next >>

MediSan 2017; 21 (06)

Space management of entomoecologic risks in Santiago de Cuba

Palú OA, Vera SM, Orozco GMI, Brito MAL
Full text How to cite this article

Language: Spanish
References: 9
Page: 695-702
PDF size: 779.97 Kb.


Key words:

panoramic epidemiology, echoepidemiology, neuronal nets, space analysis, dandy fever, Stegomyia aegypti.

ABSTRACT

An observational, descriptive and ecological study was carried out in Santiago de Cuba, in the year 2015, with the purpose of identifying the existence of space patterns regarding the Stegomyia aegypti infestation and in this way developing a space prognosis analysis in this respect. Thus, summarized simple and complex variables were used, as well as complexity paradigms (neuronal nets and geospace management). It was observed that the randomized dispersion of Stegomyia aegypti conditions diffuse patterns of the infestation, mostly defined by the social dynamics, more than by the common biological characteristics of the vector. In the same way, the use of the panoramic Epidemiology provided new edges of knowledge in the analysis of the problem.


REFERENCES

  1. Rodríguez Morales AJ. Ecoepidemiología y epidemiología satelital: nuevas herramientas en el manejo de problemas en salud pública. Rev Perú Med Exp Salud Pública. 2005 [citado 21 Jul 2015]; 22(1).

  2. Meentemeyer RK, Haas SE, Vaclavik T. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu Rev Phytopathol. 2012; 50: 379-402.

  3. Hantsch L, Bien S, Radatz S, Braun U, Auge H, Bruelheide H. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation. J Ecol. 2014; 102(6): 1673-87.

  4. Estep LK, Sackett KE, Mundt CC. Influential disease foci in epidemics and underlying mechanisms: a field experiment and simulations. Ecological Applications. 2014; 24(7): 1854-62.

  5. Niño L. Interpolación espacial de la abundancia larval de Aedes aegypti para localizar focos de infestación. Rev Panam Salud Pública. 2011 [citado 8 Ago 2015]; 29(6): 416-22.

  6. Lagrotta MT, Silva Wda C, Souza-Santos R. Identification of key areas for Aedes aegypti control through geoprocessing in Nova Iguaçu, Rio de Janeiro State, Brazil. Cad Saude Publica. 2008; 24(1): 70–80.

  7. Nnadi Nnaemeka E, Nimzing Loha, Ojogba Okolo M, Onyedibe Kenneth I. Landscape epidemiology: An emerging perspective in the mapping and modelling of disease and disease risk factors. Asian Pacific Journal Tropical Disease. 2011 [citado 8 Ago 2015]; 1(3): 247-50. 8. Redes neuronales de Kohonen [citado 8 Jul 2015].

  8. Reisen WK. Landscape epidemiology of vector-borne diseases. Annu Rev Entomol. 2010; 55: 461-83.

  9. Ciota AT, Kramer LD. Vector-virus interactions and transmission dynamics of West Nile virus. Viruses. 2013; 5(12): 3021-47.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

MediSan. 2017;21